{ "cells": [ { "cell_type": "markdown", "id": "565fd595", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Linear regression: prediction error and more" ] }, { "cell_type": "markdown", "id": "658ba253", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "##### Libraries" ] }, { "cell_type": "code", "execution_count": 2, "id": "51c0f716", "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/lib/python3.9/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.23.1\n", " warnings.warn(f\"A NumPy version >={np_minversion} and <{np_maxversion}\"\n" ] } ], "source": [ "## Imports\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import statsmodels.api as sm\n", "import statsmodels.formula.api as smf\n", "import seaborn as sns\n", "import scipy.stats as ss" ] }, { "cell_type": "code", "execution_count": 3, "id": "e53866de", "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [], "source": [ "%matplotlib inline\n", "%config InlineBackend.figure_format = 'retina' # makes figs nicer!" ] }, { "cell_type": "markdown", "id": "0e698b4b", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Goals of this lecture\n", " \n", "- Extracting model **predictions**.\n", "- Basic model evaluation: \n", " - Visualizing $\\hat{Y}$ vs. $Y$.\n", " - $RSS$: residual sum of squares. \n", " - $S_{Y|X}$: standard error of the estimate. \n", " - Using $S_{Y|X}$ to calculate **standard error** for our coefficients.\n", " - $R^2$: coefficient of determination. \n", "- Homoscedasticity. " ] }, { "cell_type": "markdown", "id": "559a9a83", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Models as *predictors*" ] }, { "cell_type": "markdown", "id": "f3f1f507", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Modeling our data\n", "\n", "> A **statistical model** is a mathematical model representing a \"data-generating process\".\n", "\n", "This means we can use a model to **generate predictions** for some value of $X$. \n", "\n", "$\\Large \\hat{Y} = f(X, \\beta)$" ] }, { "cell_type": "code", "execution_count": 3, "id": "67cfbaab", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
EducationSeniorityIncome
021.586207113.10344899.917173
118.275862119.31034592.579135
212.068966100.68965534.678727
\n", "
" ], "text/plain": [ " Education Seniority Income\n", "0 21.586207 113.103448 99.917173\n", "1 18.275862 119.310345 92.579135\n", "2 12.068966 100.689655 34.678727" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_income = pd.read_csv(\"data/models/income.csv\")\n", "df_income.head(3)" ] }, { "cell_type": "markdown", "id": "db85d42f", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Predictions from a linear model\n", "\n", "> **Predictions** from a linear model can be obtained by \"plugging in\" some value of $X$ to the linear equation with **fit model parameters** ($\\beta_0$, $\\beta_1$)." ] }, { "cell_type": "code", "execution_count": 4, "id": "e8d6d5f0", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "Intercept -41.916612\n", "Education 6.387161\n", "dtype: float64" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mod_edu = smf.ols(data = df_income, formula = \"Income ~ Education\").fit()\n", "mod_edu.params" ] }, { "cell_type": "markdown", "id": "57216729", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "Here, the linear equation would be written:\n", "\n", "$Y = -41.92 + 6.39 * X_1 + \\epsilon$" ] }, { "cell_type": "code", "execution_count": 5, "id": "cb2bdafc", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "21.979999999999997" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X = 10\n", "-41.92 + 6.39 * X ## predicted income when X = 10" ] }, { "cell_type": "markdown", "id": "816e583e", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Predictions using `statsmodels`\n", "\n", "- Instead of generating predictions *by hand*, you can use the `predict` function in `statsmodels`. \n", "- By default, this will generate predictions for all of the *original* values of $X$." ] }, { "cell_type": "code", "execution_count": 7, "id": "04c6986d", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "array([95.95797131, 74.81426521, 35.16981627, 66.88537542, 85.38611826,\n", " 74.81426521, 85.38611826, 93.31500804, 88.02908152, 21.95499996,\n", " 45.74166932, 77.45722847, 32.52685301, 64.24241216, 21.95499996,\n", " 88.02908152, 48.38463259, 64.24241216, 64.24241216, 88.02908152,\n", " 74.81426521, 51.02759585, 69.52833868, 24.59796322, 95.95797131,\n", " 29.88388975, 85.38611826, 32.52685301, 35.16981627, 66.88537542])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mod_edu.predict()" ] }, { "cell_type": "markdown", "id": "1b63039d", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### `predict()` for new data?\n", "\n", "You can also use `predict()` for **new data**––it just needs to be represented as a `DataFrame` with the appropriate columns." ] }, { "cell_type": "code", "execution_count": 8, "id": "57a39411", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "0 21.955000\n", "1 117.762418\n", "2 181.634030\n", "dtype: float64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## Create new DataFrame\n", "new_data = pd.DataFrame({'Education': [10, 25, 35]})\n", "mod_edu.predict(new_data)" ] }, { "cell_type": "markdown", "id": "f19e76d7", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Model *evaluation*\n", "\n", "Once we've built a model, we want to **evaluate it**: how *good* is this model?\n", "\n", "We'll discuss several ways to evaluate our linear model:\n", "\n", "- **Visually**: plotting $\\hat{Y}$ or the **residuals** of the model. \n", "- **Evaluation metrics**: $RSS$, $MSE$, and $S_{Y|X}$" ] }, { "cell_type": "markdown", "id": "96d85c88", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Visual comparisons\n", "\n", "We can use **data visualizations** to evaluate the success of our model. \n", "\n", "There are a few ways to do this:\n", "\n", "1. Plotting $\\hat{Y}$ as the regression line over `Income` and `Education`. \n", "2. Directly plotting $\\hat{Y}$ vs. $Y$. \n", "3. Plotting the **residuals** of our model." ] }, { "cell_type": "markdown", "id": "04b8e945", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Plotting $\\hat{Y}$ over the regression line" ] }, { "cell_type": "code", "execution_count": 9, "id": "61d00cdc", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Income')" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAILCAYAAACqz3BJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAABkGElEQVR4nO39e3zc1X3g/7+OZkZXS7LkK75gbIzNLQEbTAIBDEnrpElzc5Nt2m4TJ6XQbH/tt4XdstvLbrrb3Tb57fbebxdaatqSNmlTN9tt0/QWsDGEYLBpEkK4+YIvGF8k27JuczvfP2ZkJFuSJXukGc28no+HHh/PfM7nM+/Rx5I+7znnfU6IMSJJkiRJY6krdwCSJEmSKptJgyRJkqRxmTRIkiRJGpdJgyRJkqRxmTRIkiRJGpdJgyRJkqRxmTRIkiRJGpdJgyRJkqRxmTRIkiRJGpdJgyRJkqRxmTRIkiRJGpdJgyRJkqRxJcsdQC0KIewB2oC9ZQ5FkiRJ1esy4FSMcfnFnsikoTzampqaOq+66qrOcgciSZKk6vTCCy/Q399fknOZNJTH3quuuqrz2WefLXcckiRJqlI33HADO3fu3FuKc1nTIEmSJGlcJg2SJEmSxmXSIEmSJGlcJg2SJEmSxmXSIEmSJGlcJg2SJEmSxmXSIEmSJGlcJg2SJEmSxmXSIEmSJGlcJg2SJEmSxmXSIEmSJGlcMy5pCCF8JITwOyGEx0MIp0IIMYTwyHmOuSWE8JUQQlcIoS+E8M0Qws+EEBLjHPOJEMLTIYTTIYSTIYTHQgjfX/p3JEmSpGrVl87Sn86RyeXpT+foS2fLHdIFSZY7gAvwi8B1wGngAHDleI1DCB8E/goYAL4IdAHvB34DeAfw0VGO+Z/AfcXz/wFQD3wM+L8hhJ+KMf5uqd6MJEmSqk9/JkdPf4YHtu1my84DdPdl6GhOsXHtEu5Zv4LWxhRNqTE/v644M66nAfhZYBXQBnx6vIYhhDYKN/054I4Y44/FGP8DcD3wdeAjIYSPnXXMLRQShleBt8YYfzbG+JPADRQSjv8ZQrispO9IkiRJVaM/k2Pnvm5u+9yjPLR9D919GQC6+zI8tH0Pt332UXbt66Y/kytzpBM345KGGOOjMcaXY4xxAs0/AswDvhBjfGbYOQYo9FjAuYnHTxS3/z3G2D3smL3A7wENwCcvMHxJkiRVuZ6BDJ96eAeD2fyo+wezeT758A56BjLTHNmFm3FJwyS9s7j96ij7tgF9wC0hhIYJHvP3Z7WRJEmSzuhLZ3lg6+4xE4Yhg9k8D27dTf8MqXGo9qRhdXH70tk7YoxZYA+Fuo4VACGEFmAxcDrG+Poo53u5uF01kRcPITw72hfnqcOQJEnSzBQIbNl5YEJtt+w6CISpDahEZmIh9GS0F7cnx9g/9PzsC2wvSZKkMfSlswQCyUQgm4tEIs311X37mUyEMzUM59PVmyaZMGmYCYau0kTqI4abUPsY4w2jvmiht2HtJF9TkiRpRqi2mYMmI5uLdDSnJpQ4dLbUk81FZsK3otqHJw31DLSPsb/trHbna3++nghJkqSaVo0zB01GJLJx7ZIJtd24ZjGT/+y6PKo9aXixuD2nBiGEkASWA1lgN0CMsRc4CMwKIVwyyvmuKG7PqZGQJElSdc4cNBnN9UnuWb+ChuT4t9kNyTruXr+CphkyXKvak4avFbfvGWXf7UAz8GSMcXCCx3zfWW0kSZJUVK0zB01Wa2OKzZvWjZk4NCTr2LxpHa2NqWmO7MJVe9LwJeAY8LEQwo1DT4YQGoFfKT78/bOO+d/F7S+EEDqGHXMZ8JPAILB5qgKWJEmaqap15qDJakolWLOsg8fvv5O7bl1OZ0s9UKhhuOvW5Tx+/52sWdYxo+o6ZkZ/yDAhhA8BHyo+XFjc3hxCeLj472Mxxn8PEGM8FUL4cQrJw2MhhC9QWNX5AxSmY/0S8MXh548xPhlC+HXgXuCbIYQvAfXADwKdwE8VF3qTJEnSMNU6c9CFaEolaEoluHfDKu7bsPrMDFIQZ8yQpOFmXsRwPfCJs55bUfwC2Af8+6EdMcYvhxDWA78A/ADQCLxCISn47dFWlo4x3hdC+Cbw/wPuBvLATuD/H2P825K+G0mSpCpRrTMHXYzhU8zO5Pc645KGGONngM9M8pgngPdO8pg/Bv54MsdIkiTVsqGZgx7avue8bWfSzEGq/poGSZIkTZNqnTlIJg2SJEkqoWqcOUgmDZIkSSqhapw5SDOwpkGSJKmU+tJZAuHM7DaROKJ4VZNXbTMHyaRBkiTVqP5Mjp7+DA9s282WnQfo7svQ0Zxi49ol3LN+Ba2NKT8Nv0jVMnOQTBokSVIN6s/k2Lmvm089vGPE6sXdfRke2r6HR57ax+ZN6xxGIxVZ0yBJkmpOz0DmnIRhuMFsnk8+vIOegYktVCZVO5MGSZJUU/rSWR7YunvMhGHIYDbPg1t305/OTlNkUuUyaZAkSTUlENiy88CE2m7ZdRAIUxuQNAOYNEiSpJqSTAS6+yY27KirN00yYdIgmTRIkqSaks1FOpontrBYZ0t9capQaeJijLx69DTdvelyh1IyJg2SJKmmRCIb1y6ZUNuNaxYDJg2auBN9ab783EH+5rlDbH3paLnDKRmTBkmSVFOa65Pcs34FDcnxb4MaknXcvX6Fi5FpUtLZPPuO9wGw51gvu4+eLnNEpWHSIEmSak5rY4rNm9aNmTg0JOvYvGkdrY0TG8YkDZnf1si1i9oJAd66pJ1L2pvKHVJJmDpLkqSa05RKsGZZB4/ffycPbt3Nll0H6epN09lSz8Y1i7nbFaE1Aa+f7Ac4JzG4ZeUc3rqknfltjeUIa0qYNEiSpJrUlErQlEpw74ZV3LdhNclEKBY9R4ckaVx96SzbXjrGC6+fYu6sen7kbcuoq3tzlq3m+iTNVfZ/yOFJkiSppjXXJ2mqT5BK1NFUnzBh0Hnl8oXZkQCOnU7zzYMnyxzR1DNpkCRJkiahtTHFTcs7AVg5fxbL57SUOaKpZyotSZIkjaG7N82pgQzLzkoM1iydzcK2RpZ2Npcpsull0iBJkiSdJZ3N8409x9n12gkaknV84pbLaBxWGJ9M1NVMwgAOT5IkSZJG9eLhHnL5SF86xzf2dJU7nLIyaZAkSTNCXzpLfzpHJpenP52jL50td0iqYvXJOm67Yh4Ai2c3cdXC1jJHVF4OT5IkSRWtP5Ojpz/DA9t2s2XnAbr7MnQ0p9i4dgn3uJ6CSqB3MMvrJ/tZOX9kYrBqwSzqk4u5bE4zIYQxjq4NJg2SJKli9Wdy7NzXzace3sFgNn/m+e6+DA9t38MjT+1j86Z1rFnWYeKgScvnI7v2d/PU7i7y+cjHb26kvfnNVcBDCCyfW/0zI02Ew5MkSVLF6hnInJMwDDeYzfPJh3fQM5CZ5shUDUKAl944TTqbJ5uPbH35aLlDqlgmDZIkqSL1pbM8sHX3mAnDkMFsnge37qbfGgdNUgiBO1YX6hbmzKrnuiXtZY6ocpk0SJKkihQIbNl5YEJtt+w6CNT2mHONbzCb47uHT53z/CXtTXx4zWJ+5G3LzlmLQW+ypkGSJFWkZCLQ3TexYUddvWmSCZMGje47h06x/ZWj9A7maG1MsXh204j9l1m3cF72NEiSpIqUzUU6hhWljqezpZ5sLk5xRJqpdh87Te9gDoDHXjxCPu//lckyaZAkSRUpEtm4dsmE2m5csxjwRvBCVfsaGLddMY9kXWBWQ5K1l3ZQ47OnXhCHJ0mSpIrUXJ/knvUreOSpfeMWQzck67h7/Qqa6r2tmaxqWwMjl4+89EYPVy5sHbGuQntTig9ev5gF7Q00JGfO+6kk9jRIkqSK1dqYYvOmdTQkR79laUjWsXnTOlobJzaMSW8aWgPjts89ykPb95ypHxlaA+O2zz7Krn3d9GdyZY50YvYd7+WRp/bx1W8f5ruHe87Zf+mcZhOGi2DSIEmSKlZTKsGaZR08fv+d3HXrcjpb6oFCDcNdty7n8fvvdGG3C1Rta2C81tVHV28agO0vHyN9nql6NTn240mSpIrWlErQlEpw74ZV3LdhNclEKBY9R4ckXaDJroFx34ZVF/S97ktnCYQz1ywSaZ6ia3bT8k5eeP0UmVxk7bLZJOosXCglf9IkSdKMMPxm046FizPZNTDu27B6UuefylqJGCMvHznN8rktpBJvDpppSCZ431sXMbspRUuDt7il5ndUkiSpxkzlGhhDtRJnD30aqpV45Kl9bN607oKGlR05NcCjLx7h0IkBbrl8Dm9bMWfE/rPXX1DpWNMgSZJUY6ZyDYyprJU4fGqAQycGANixt4tTM6TeohqYNEiSJNWYqVoDY7K1Ev2TXA/i2kXtzGttIFEXuH5px5izaqn0HJ4kSZJUY6ZqDYzhtRLXLGrj3759Gd9z1XxmNaQ4PZjhn75zhM9/Yx/PHzp13lqJfcd7mTurYUR9Ql1dYMM1C0jV1dFRnElL08OkQZIkqQYNrYHxyTGGEl3IGhjJRODUQJb//qFruWXlXP7k63v53Fe/e6YQ+kNrFvO7P7yWJ185xn/+m+dHrZU42Zdh68tHefXIaa5Z1MaGaxaO2D+/tXHyb1YXzT4dSZKkGjQVa2Bkc5Ff2/gW5rc18p7f3MbmJ/aOWDRu8xN7ec9vbmNBeyO/uvEto9ZKnOhP8+qR0wA8f+gUh08OlODd6mLZ0yBJklSjSr4GRojcfPkc3vW/to5bCP2Tn9/Jv9y3nhDOTRqWzWlhxbwWdh/t5epFbbQ2ertaCbwKkiRJNa5Ua2DECJuf2DuhQujNT+zl4zcvY1ZDjjmzGkbsv2PVfG5anuWSdqdQrRQmDZIkSTWuVCs3T2bRuC/u2E9TKsGyOc185IYlhPBmfUN7c4p2Jl5Loaln0iBJklSjSr1y82QWjTs9mCUEONDdzytHTnPFgtYLfRuaBhZCS5Ik1aChlZtv+9yjPLR9z4iC5Ye27+G2zz7Krn3d9GdyEz7nZBaNm9WQJJ+PLJ/bcs7wJFUekwZJkqQaNBUrN09m0biP3LCY9731Ej60ZvGZmZtUuUwaJEmSasxUrdw8tGjc+VZqbkjW8e/uXMnVi9onHLPKy6RBkiSpxkymYHnLroPAuYuwjWVo0bjUGHeZF7JonMrPpEGSJKnGTKZguas3PerKzWOKMLs5xR9uWsftV8w90+swuyl1wYvGqfycPUmSJKnGDBUsTyRx6GypJ5uL467f0J/O8capfpKJOrp7C+ecN6uRX/nQtXT3ZbjqklZyebjgReNUdl41SZKkGjNUsPzQ9j3nbbtxzWLg3JWbAfL5yHP7T/C17x7h9GCW973lEprqE8yZVc/81kYSdYFL55Q4eJWFw5MkSZJqzGQKlu9ev2LM3oGT/Wn+6YU3OH56kMFMjpeP9LBy/iwuaW8iUTeJIU2qeCYNkiRJNWioYHmsxGG8guXBbI59x3s50D3AWxe3k6gLLJ3TzNtWzKHRWoWq5PAkSZKkGtSUSrBmWQeP338nD27dzZZdB+nqTdPZUs/GNYu5+6wVoTO5PPu7+mhpSHK0Z5AYIQRYu2w2y+Y0s2pBK8mEn0dXK5MGSZKkGtWUStCUSnDvhlXct2E1yUQgm4sML1iOMfLykdP8w/OHOXJqgHdfcwntTSlmN6dY0NZIfbKOBW1N5X0jmnKmg5IkSTWuuT5JU32CVKKOpvrEiBqG/nSOf/rOGxzq7iebi3z74AmWz21maWcz9eepiVD18EpLkiTpHNlcnoMn+nn1aC9vWdROXV1gflsj71g5l5YGB6vUGq+4JEmSgMIUqnuP99LWlOKNUwPk84W6hZULZjG/bRmXzW2x0LlGmTRIkiSJ/V19/MPzh9l3vJfbr5jPwvZGZjUmuaS9kcZUgkWzrVuoZQ5PkiRJEk/tPs6rR06TzUV2HehmcUcTy+1ZUJFJgyRJkvjeqxdQn6yjvTnF7Svn0d507voMql0OT5IkSaohMUb2Hu9jWWczdcNWbZ7dXM/Hb17G/LbGURd0U20zaZAkSaoRR3sG2frSUfZ39fE9Vy3gLUvaR+y/fH5rmSJTpXN4kiRJUo145chp9nf1AfDEq8cYyOTKHJFmCpMGSZKkGnHjZR20NiapC4ErF9qroIlzeJIkSVIVOtDdx/zWxhGrNqcSdbz7moU01SeYO6uhjNFppjFpkCRJqiKnBjJsf/kYLx7u4ablnbxj5dwR+5d2NpcpMs1kDk+SJEmqIvu7+njxcA8Az+7r5kRfuswRqRqYNEiSJFWRqy9pY2F7IwAr588iMWxaVelCOTxJkiRphjp2epCGZN2IdRVCCLzrqvmks3mWdDgUSaVh0iBJkjTDDGRyfH33cb65/yRXLJjFe99yyYj981sbyxSZqpXDkyRJkmaYY6cHee61E+Rj5MXDPRzo7it3SKpyJg2SJEkzzJKOZlYX11lY2tlMUypR5ohU7RyeJEmSVMF6BjJkcpHOlvoRz996xVyumD+LlfNnEYLFzppaJg2SJEkVKJvL8+y+bnbs7WLurAZ+cN3SEclBW2OKtmEF0NJUcniSJElSBTo9mOUbe7rI5CKvnxzghdd7yh2SaphJgyRJUgWa3VzP2ks7AJjb2kB7s70KKh+HJ0mSJJXZQCbHqf4M89tGTpV60/JOZjenuPqSNupcpE1lZNIgSZJUJvl85Duvn2L7K8dI1gU+cctlpBJvDgSpT9Zx7eL2MkYoFTg8SZIkqUzSuTzbXzlGfzpHz0CWZ/Z2lzskaVQ1kzSEEN4XQvjHEMKBEEJ/CGF3COEvQwg3j9H+lhDCV0IIXSGEvhDCN0MIPxNCcCJkSZJUEo2pBO+4fC4ArY1J5rXWn+cIqTxqYnhSCOGzwM8Bx4EvA8eAlcAHgR8IIXw8xvjIsPYfBP4KGAC+CHQB7wd+A3gH8NHpjF+SJM182Vyeo6cHuaS9acTz1yxqIxcj1yxqGzE0SdOrL50lEEgmAtlcJBJprq+JW+UJqfrvRAhhIfDvgTeAt8YYjwzbdyfwNeC/Ao8Un2sD/gDIAXfEGJ8pPv9LxbYfCSF8LMb4hWl9I5IkaUaKMbL7WC9bXzxKfybHJ265jFkNb96C1dUFrl86u3wB1rj+TI6e/gwPbNvNlp0H6O7L0NGcYuPaJdyzfgWtjSlX3KY2hicto/A+vzE8YQCIMT4K9ADzhj39keLjLwwlDMW2A8AvFh9+ekojliRJVSNGeOKVY5zsz5DO5nnilWPlDklF/ZkcO/d1c9vnHuWh7Xvo7ssA0N2X4aHte7jts4+ya183/ZlcmSMtv1pIGl4G0sBNIYS5w3eEEG4HWoF/Hvb0O4vbr45yrm1AH3BLCKFhCmKVJElVpq4usH5V4fPJxlSCBWdNq6ry6RnI8KmHdzCYzY+6fzCb55MP76BnIDPNkVWeqh+eFGPsCiHcD/w68J0Qwpcp1DZcDnwA+CfgnmGHrC5uXxrlXNkQwh7gGmAF8MJ4rx1CeHaMXVdO5j1IkqSZIcbC6s2LZo+sW1g2p4V3XTWfK+a30lTvUJdK0JfO8sDW3WMmDEMGs3ke3Lqb+zasoqmGaxxqoaeBGONvAhspJEk/DvxHCsXM+4GHzxq2NDQZ8skxTjf0/OySBypJ0hj60ln60zkyuTz96Rx96Wy5Q9JZDp3o58+f3s9fPLOfIz0D5+x/65LZJgwVJBDYsvPAhNpu2XUQuLDF9arlZ7cm0qUQws8B/wP4beB3gcMUPu3/VeDzIYTrY4w/N9HTFbfxfA1jjDeMEc+zwNoJvp4kqYZZpDlzfGPPcd44VUgWHnvxKB+9YQkhuIpzpUomwpkahvPp6k2TTEzuWlbbz27V9zSEEO4APgv8TYzx3hjj7hhjX4xxJ/Bh4CBwXwhhRfGQoZ6EsZZfbDurnSRJU8IizZll/ar51IVAsi6wpKOJ/Hk/XlQ5ZXORjubUhNp2ttSTzU38glbjz27VJw3A9xe3j569I8bYBzxN4fuwpvj0i8XtqrPbhxCSwHIgC+wueaSSJA1jkWZlijFy6EQ/MY68iexsqed7r17Ax2++jFsun0uizl6GShaJbFy7ZEJtN65ZzAQGmZxRjT+7tZA0DM1yNG+M/UPPp4vbrxW37xml7e1AM/BkjHGwNOFJknSuyRZp9s/QcdIzTVdvmi8/d5Av7tjP7mO95+y/elEb7RP89Frl1Vyf5J71K2hIjn873JCs4+71KyZcBF2tP7u1kDQ8XtzeHUJYPHxHCOH7KKzwPAA8WXz6SxRWjP5YCOHGYW0bgV8pPvz9KY1YklTzpqtIU5Pz3P5u9h7rA2DbS0fJ5sa/MVRla21MsXnTujETh4ZkHZs3raO1ceKJYLX+7NZCIfSXKKzD8D3ACyGEv6ZQCH0VhaFLAfiPMcbjADHGUyGEHy8e91gI4QtAF4XpWVcXn//itL8LSVJNmeoiTV2Ym1fM5buHe0hn81za2Uwuxpq4mapWTakEa5Z18Pj9d/Lg1t1s2XWQrt40nS31bFyzmLsvoGC5Wn92q/7/eYwxH0J4L/CTwMcoFD83U0gEvgL8dozxH8865sshhPXALwA/ADQCrwD3Fttb2iRJmlJDRZoTufkYKtKcQROxzAhvnBpg7qyGEbUJTfUJNly9gLbGFPNdpK0qNKUSNKUS3LthFfdtWE0yEYpFz/GC1mWo1p/dqk8aAGKMGeA3i18TPeYJ4L1TFJIkSeMaKtJ8aPue87adbJGmxnd6MMsTrxzjO4dOccfqeay5tGPE/pXzW8sUmaZS87AE4WJu4qv1Z7cWahokSZpxpqpIU+f34uFTfOfQKQC+vvv4jF2MS+VRrT+7Jg2SJFWoqSjS1Pldt2Q2s4szIC3paCbngguapGr82Z0ZqY0kSTVoKoo0NVJ3b5qm+gSNw76HyUQd33PVAvIxsmxOSxmj00xVjT+7wZre6RdCeHbt2rVrn3322XKHIkmaIfrSWQLhoos0VTCYzfH0ni52vXaCty5p547V88sdkqpUOX92b7jhBnbu3LkzxnjDxZ7L3zaSJM0ApSrSVMFrx/t4Zm83AP+6/yRvWdzOnFkN5zlKmrxq+dm1pkGSJNWclfNnsaSjCYCF7SYL0vnY0yBJkqpa72CWfIwjik5DCNx55XyO9gxy5cJWQpgZC2xJ5WLSIEmSqlIuH3lufzdP7e5iaWczH7hu0Yj9c2c1MNchSdKEODxJkiRVpWOnB9n20jHS2TyvHjnNvuO95Q5JmrFMGiRJUlVa0NbI1YvaAOhsqSdR5xAk6UI5PEmSJM14g9kcfYM5OlrqRzx/68q5zGtt4Lols00apItg0iBJ0gxw9lzvkThiKsdaMNr3oCmV4IXXe3jilWM01Sf44ZsupW5YctDSkGTtpR1ljFqqDrX120aSpBmmP5Ojpz/DA9t2s2XnAbr7MnQ0p9i4dgn3zMBVZS/EeN+Df/v2S/mH5w8DcHowy7cPneStS2aXN2CpCpk0SJJUofozOXbu6+ZTD+9gMJs/83x3X4aHtu/hkaf2sXnTOtYs66jaxGEi34Ofe/dquvrStDelaKzS74NUbhZCS5JUoXoGMufcLA83mM3zyYd30DOQmebIps9Evgef/ep3ecuSdj5xy2WsWtA6zRFKtcGkQZKkCtSXzvLA1t1j3iwPGczmeXDrbvrT2WmKbPpM9HuQzkWe2dNNPh+nKTKp9pg0SJJUgQKBLTsPTKjtll0HgeqbGcjvgVQ5TBokSapAyUSgu29iw466etMkE9V3w+z3QKocJg2SJFWgbC7S0ZyaUNvOlnqyueoYmhNj5NjpQaB2vwdSJTJpkCSpAkUiG9cumVDbjWsWAzP/hvmNUwP8xTP7+fNvvMbJ/kxNfg+kSmXSIElSBWquT3LP+hU0JMf/U92QrOPu9StomuELvcUY+ZcXjnDoxADZfGT7y8dq7nsgVTKTBkmSKlRrY4rNm9aNedPckKxj86Z1tDZObAhPJQshsH71PAASdYG2piQxxpr6HkiVzJRckqQK1ZRKsGZZB4/ffycPbt3Nll0H6epN09lSz8Y1i7l7Bq8Ifez0IHNnNYx4bvHsJm5fNY8Vc1voaKkHqvt7IM0kIUbH/023EMKza9euXfvss8+WOxRJ0gzRl84SCCQToVjwGy96OM7Z54xEmqd4iM/JvgxbXz7Kq0dO87GblnJJe9OEj52K74FUzW644QZ27ty5M8Z4w8Wey580SZJmgOE38xf7oXp/JkdPf4YHtu1my84DdPdl6GhOsXHtEu6Z4k/ut79yjFePnAbgsReP8rF1SwlhYlOllvJ7IGlyrGmQJKmG9Gdy7NzXzW2fe5SHtu85sw5Cd1+Gh7bv4bbPPsqufd30Z3JT8vq3rpxLsq6QJHS21JNxmlRpRjBpkCSphvQMZPjUwzsYzOZH3T+YzfPJh3fQMzCxRdXG09Wb5uxh0O3NKe68cj4fu2kp775mIfXnmRlpuL50lv50jkwuT386R186e9ExSpoYhydJklQj+tJZHti6e8yEYchgNs+DW3dz34ZVF1Qz0J/O8eSrx/jWwZO89y2XsGpB64j91y5un9z5yjicSlKBPQ2SJNWIQGDLzgMTartl10FgYrUGZ3t2XzffPHCSGGHbS0fJ5MZPUsZT7uFUkgpMGiRJqhHJRDhz030+Xb1pkokLSxpuvKyD5vrCJ/9zZtWft2djPNM5nErS2EwaJEmqEdlcpKN5YougdbbUF6c1Hd/J/gzZs3oSGlMJ3nnlfD54/SI+dP1iZjVc2GjoyQ6n6rfGQZoyJg2SJNWISGTj2iUTartxzWJg7KQhnc3z5KvH+JMn97Jr/4lz9l+xoJUV82ZNeDrV0UzXcCpJ52fSIElSjWiuT3LP+hU0nGfGooZkHXevXzFuEfSLh3v4xu4usvnI03u6OD1Y+k/5p2s4laTzM2mQJKmEKn1a0NbGFJs3rRszcWhI1rF50zpaG8cfxnTNojbmzqoHoKO5nsEpKESeiuFUki6MU65KklQCM2Va0KZUgjXLOnj8/jt5cOtutuw6SFdvms6WejauWczdo8Tan84RQqFWYUhdXeDOK+dzoi/DNYvaLmoY0liGhlM9tH3PeduebziVpIsTzl50RVMvhPDs2rVr1z777LPlDkWSVAJD04KONcvP0Kf3a5Z1VETiMKQvnSUQSCZC8VP6OGJIUj4f+ebBk3z91eNcMX8W33P1gmmP8UjPALd99tFxi6EbknU8fv+dzG9tnMbIpMp3ww03sHPnzp0xxhsu9lwOT5Ik6SLN1GlBm+uTNNUnSCXqaKpPnFPDcKC7n0e/e4SBTI5vHzrJkVMD0x5jqYZTSbo4Jg2SJF2Eap4WdGlnE8vntgDQ1pgifRGLtF2o4cOp7rp1OZ0thTqKzpZ67rp1OY/ff2fF9eBI1ciaBkmSLsJkpwW9b8PqKY7owmRyeQaz+RFrKoQQuH3VPBbNbmLtpbNJJsrzWWNTKkFTKsG9G1Zx34bVYw6nkjR1/EmTJOkizPRpQWOMvHzkNNteOkpnSz0fXrN4RFFzZ0s9Ny3vLGOEb2oeliDYsSBNL4cnSZJ0EWb6tKAn+jJ85Vuv0zOQZd/xPl492lvukCRVIJMGSZIuQilXWS6HjpZ63rqkHYCm+gR5Z1WUNAqHJ0mSdBGGVll+5Kl9550W9HyrLE+1fD5yOp2l7ayZhm5eMZdUoo51l3WOWItBkobY0yBJ0kWaCdOC7u/q4/NPv8Zf7zxILj+yN6GpPsFtV8wzYahhlb6SucrPngZJki7ShayyPJ0GMjn+5l8PkS72hDy3/wQ3LOsoSyyqLDNlJXOVn0mDJEklUMnTgjamErx9RSfbXjpGKhEIlTWBk8pkrJXMu/syPLR9D488ta8iVzJXeZg0SJJUQuWeFjTGyKmBLO1NI4dCXb+0g9ODOdZeOtvVkwVMfCXzx++/06RB1jRIklQtjvYM8lc7D/LnT7/GQCY3Yl+iLrB+1TwTBgHVvZK5poZJgyRJVSCfj/ztNw+xv6uP/nSOr+8+Xu6QVMEmu5I5OKat1pk0SJJUBerqAreunFv4dwjUhUB0zQWNYaavZK7pZ02DJEkl1JfOEghnCqEjcUSdQ6mcGsics97CyvmzWHdZJ1de0srcWQ0lf01Vj6GVzCeSOAytZG5ZQ20zaZAkqQSma+rKUwMZtr98jFeOnOZH376Mjpb6M/tCCNx6xdyLfg1Vv6GVzB/avue8bStxJXNNP4cnSZJ0kYamrrztc4/y0PY9Zz69HZq68rbPPsqufd30n1WcfCH+6fk3ePFwD7l8ZNvLRy/6fKpNQyuZj7Ug4ZBKWMlclcGkQZKkizTRqSt7BiY2hnw0J/sznB7M8o6Vc8+ss5BK1JHNjT/7jTSWmbCSuSqHaaMkSRdhslNX3rdh1YQ/te0ZyJBK1HHoRD+9gznqk3WsWjCLWy6fyyXtjSztbC7FW1CNqvSVzFVZTBokSboIk5268r4Nq8/bbiCT44lXjvH1V49z8+VzmN/aSKIuMHdWoX7hpuWdFxWzNKSSVzJXZfF/gyRJF6HUU1fGGPn7b73Ojr3dxBh5Zm83P/z2S7mkrZFkwlHFmhrlXslclc/fPpIkXYShqSsnYmjqyrH0DmZ59ehpFs1uoq4ukErWcemcZua01JswSCorexokSboIFzt15enBLKm6wJGeQU4Ueyzam1O899qFzGttYOX8WYTgwlqSysukQZKkizA0deUjT+0btxj67Kkrs7k8z+zt5rGXjnD1JW0snzuLEGBeawPzZjVQt9BEQVLlsK9TkqSLdCFTV25/5Rh/+81DnOzLsOu1EzSlEqxa0MqCtkbq6kwYJFWWKUkaQgjvDyF8IYTwryGEV4Y9f1UI4edCCIun4nUlSSqH4VNX3nXrcjqLqzR3ttRz163Lefz+O1mzrIOmVIKBTI49x3ppa0zRkEyQTAQWdzTROaue+vMstCVJ5VLS4UmhMOjyYeDfFp/qB5qGNekG/gcQgM+W8rUlSSqn8aauHKpJOHSin67eNDFCQ6qO73vLQpJ1gbcumW3vgqSKVuqahn8H/CjwR8B9wM8CvzS0M8Z4OITwBPA+TBokSVVo+NSViRB5/tBJ/vmFIyxsa+Taxe0AdM6qZ0FrgzMiSZoxSp00/Bjwr8CPxxhjCGG0eeVeBt5d4teVJKnifOvgSb707H6yucjx04NcvaiN1QtbaXQifEkzTKk/4lgNPBpjHHsSajgCzCvx60qSVDEyuTz7u/oAaGusp64usLC9ibmtDSYMkmakUvc0ZIHG87RZDJwu8etKklRW2VyebD7SWCx2PtGXIVEXePe1Czg9kGXd8k5SDkeSNEOVOmn4DnBHCCGM1tsQQmgE3gnsKvHrSpJUFjFGdh/rZdtLR7mkvYn3XLuQ1sYUC9obaG8qzJAkSTNdqT/y+FPgSuA3Qggjzh1CSAC/DiyiMMOSJEkz3tGeQf7muUOc6MvwwuunOHSiH4D5rY0mDJKqRqmThgeAfwR+GtgP/BBACOFLwD7gJ4C/iTF+vsSvK0lSWcxva2Tl/FlAYRrV3sFsmSOSpNIr6fCkGGMuhPD9wC8CPwmsKu7aCJwA/lvxS5KkGSfGyEAmT1P9yB6E21fNo6Uhwc0r5p6zT5KqQalrGogxZoHPhBB+mULSMAc4CXw3xpgr9etJkjQdDp3o57EXj5KsC3z0xiVnFmwDaG9K8c4rF5QxOkmaWiVPGoYUC6FfnKrzS5I0XXoHs3zp2QPk8oU5Pl58o4crF7aVOSpJmj7O/SZJ0nm0NCS5fulsAJJ1gb60HeeSakvJexpCCEuAnwWuB5YAqVGaxRjj5aV+bUmSSqEvnaW5fuSfyLet6GQgk+Nty+fQ3jzanzZJql4lTRpCCHcAX6GwwFsWeKO4PadpKV9XkqRS6OpNs+2lo3T1pvn4zctIDluMrSGZYMM1C8sYnSSVT6l7Gj4HJICPA38WY8yX+PySJE2JXD7ypWf30ztYGHq087UT3LS8s8xRSVJlKHVNw1uAP48xPmLCIEmaSRJ1gbctnwNACNCfsW5BkoaUuqehG+gq8TklSSq5/nTunDUV3rK4nSM9g1y3pJ35bY1likySKk+pexr+Flhf4nNKklQyvYNZ/uH5w2x+cg996ZFld3V1ge+9eoEJgySdpdRJw88D7SGE3wshtJT43JIkXZQYI//nuUN859ApBjN5nnjleLlDkqQZoaRJQ4zxGPAe4GPA4RDCsyGEr43y9S+lfN2JCiHcFkL4qxDC6yGEweL2H0MI7x2l7S0hhK+EELpCCH0hhG+GEH4mhJAY7dySpMoXQuDmy+eceTyQyZEvLtgmSRpbqadcvQZ4FOgoPrVmjKbT/hs6hPCLwH8DjlEYRvU6MJdCjHdQmCp2qO0Hgb8CBoAvUqjTeD/wG8A7gI9OY+iSpAs0kMnRmBr5Wc/yuS1cf+lsVsxtYdkcO8UlaSJKXQj968Ac4D8DfwwcijGWffqJEMJHKSQM/wxsjDH2nLU/NezfbcAfADngjhjjM8Xnfwn4GvCREMLHYoxfmK74JUmTM5jN8fSeLv51/wk+dtOlzJ3VMGL/navnlykySZqZSl3TcDOwJcb4KzHG/RWSMNQBnwX6gB8+O2EAiDFmhj38CDAP+MJQwlBsMwD8YvHhp6cuYknSxfqXF47wzN5uMrnI1hePEqNDkCTpYpS6pyEN7C3xOS/WLcBy4EtAdwjhfcC1FIYePR1j/PpZ7d9Z3H51lHNto5B83BJCaIgxDk5RzJKki3DT8k5efuM0+RjJ5vMMZvPnDFOSJE1cqZOGx4CbSnzOi7WuuH0D2ElhAbozQgjbgI/EGI8Wn1pd3L509olijNkQwh7gGmAF8MJ4LxxCeHaMXVdOLHRJ0vmMVrcwd1YDb1vRSXtTiisXthJCKFN0klQdSj086eeAq0MI/zFUzm/ooYGrPwE0Ad8DtFLobfgH4HbgL4e1by9uT45xvqHnZ5c0SknSpOTykWf3dfHQ9j3sPdZ7zv63r5jDVZe0mTBIUgmUuqfhF4FvA/8d+PEQwnOMfvMdY4w/VuLXHsvQx0+BQo/CvxYfPx9C+DCFHoX1IYSbRxmqNJqhvz7nHSAbY7xh1BMUeiDWTuC1JEljeGr3cZ7e0wXA1peOsrSzmUSdCYIkTYVSJw2bhv17efFrNBGYrqShu7jdPSxhKAQRY38I4R+KsdwEfJ03k5x2RtdW3I7VEyFJmgbXL53Nc/tPkM7mATg9kKW9OXWeoyRJF6LUScNYSUI5vVjcnhhj/1BS0TSs/Y3AKmBETUIIIUnhPWaB3SWNUpI0pnQ2T7IuUDesJ6GlIcltV8wlk4tcv3S2vQySNIVKmjTEGPeV8nwlso3CTf4VIYT6GGP6rP3XFrd7i9uvAT9CYWXrPz+r7e1AM7DNmZMkaerFGPnu4R62v3yMm5Z3ct3S2SP2v3XJ7FGPkySVVqkLoStOjPEYhVWd2yksOndGCOF7gXdTGGo0NMXqlyisGv2xEMKNw9o2Ar9SfPj7Uxy2JAl4/tApvvrtw5wezPLkq8cZyJR9+Z/z6ktn6U/nyOTy9Kdz9KWz5Q5Jki5aqYcnARBCeDtwF7CGwixDJykM9dkcY3xyKl7zPO4F3gb8QgjhduBpYBnwYQorP/94jPEEQIzxVAjhxykkD4+FEL4AdAEfoDAd65coJCGSpCl25cJWnt7Txcn+DIk66O5Lc0l70/kPLIP+TI6e/gwPbNvNlp0H6O7L0NGcYuPaJdyzfgWtjSmaXCtC0gwVSr1KZgjhV4D/xJuzDA0Xgc/GGH++pC86ASGETgqzO30YWAz0ANuBX40xPjVK+3cAv0BhletG4BXgj4DfvtiVrkMIz65du3bts8+OtYyDJNWeXD6Sj5FUYmQn+KtHT/P6iQHWLe+gIVmZN939mRw793XzqYd3MFgszB6uIVnH5k3rWLOsw8RB0rS54YYb2Llz586xZvScjJIOTwohfBT4eeA1Cj0NKygUGK8oPn4NuD+E8G9K+boTEWPsijHeG2NcHmOsjzHOiTF+cLSEodj+iRjje2OMHTHGphjjW2KMv3GxCYMk6Vz7jvfy+W/s46ndx8/Zd/m8Wdx6xdyKTRgAegYyYyYMAIPZPJ98eAc9A5lpjkySSqPUNQ0/RWHl5XUxxj+KMe6NMQ4Wt39EYXXmo8BPlvh1JUkz1P6uPrbsPMjx02l2vXaC7t6z56uobH3pLA9s3T1mwjBkMJvnwa276bfGQdIMVOqk4TrgS8Xi43MUn/9L4PoSv64kaYZa0tHE4tmFOoVEXeB478yanC4Q2LLzwITabtl1kNFH70pSZSt1IXQS6DtPm74peF1J0gwQYySTi9Qn3/zMKoTAHavnsWv/CW5dOZeWhpn1JyKZCHT3TWzYUVdvmmTCpEHSzFPqnoZXgO8PIYx63uLz7wVeLfHrSpIq3JFTA/zlMwf4x+8cPmff/LZG3n3NwhmXMABkc5GOCa5E3dlSTzZX2glIJGk6lDpp+HPgKuD/hBCuGL4jhHA5helKrwb+rMSvK0mqYCf7MvzZ069x8EQ/L79xmv1d5+uUnjkikY1rl0yo7cY1iylMJChJM0upk4Zfp7AC8/uAF0IIr4UQvhFC2Ae8CHwIeKLYTpJUI9qbU1y5sBUo1C0cOz2z6hbG01yf5J71K2hIjv8ntSFZx93rV9BUP/N6UySppElDjDENfC+F9Q32AEsozJi0tPj4F4B3FdtJkqpUepSZhG69Yh5XLJjFj759GWsu7ShDVFOntTHF5k3rxkwchtZpaG2c2DAmSao0Jf+4I8aYAX4V+NUQwiygHTgZYzxd6teSJFWWk30Ztr58lNMDWX7opqWE8GbR76yGJN//1kVljG7qNKUSrFnWweP338mDW3ezZddBunrTdLbUs3HNYu52RWhJM9yU9pEWEwWTBUmqAelsns8/vY/BTKGX4flDp7h2cXuZo5o+TakETakE925YxX0bVpNMhGLRc3RIkqQZr9QrQt8QQvjPIYQFY+xfWNx/fSlfV5JUfvXJOq5fOvvM4+MzbJG2UmmuT9JUnyCVqKOpPmHCIKkqlPo32X3ArcB/G2P/G8CPASuBj5f4tSVJ0yidzY9YbwFg3WWdHDudZt1lHVzS3lSmyCRJpVbq2ZNuBh6NMY46n1zx+a8B7yjx60qSpkl/Ose/vPAGf/L1vecUPKcSdXzgukUmDJJUZUqdNCwEDpynzSHgkhK/riRpGsQY+Ytn9vPNAyfpGcjyzN6ucockSZoGpU4a+oB552kzD6ieCbolqYaEELhh2ZvTpR7rTTNG57IkqYqUuqbhOeCDIYR7R5tiNYTQBnyw2E6SVOEyuTypxMjPl65Z1MZrXX1cubCV5XNbRkyrKkmqTqXuaXiQQk/CP4UQ3jp8RwjhOuAfgbnFdpKkCpXJ5Xny1WM8tH0PPQOZEftCCLz3LZewYt4sEwZJqhEl7WmIMX4xhPB9FGZG2hVCeAM4CCwGFgAB+OMY45+X8nUlqVr1pbMEwpk5/yOR5mmYwvPvvvk6e471AvDEK8d4z7WWoklSLZuKFaE3hRCeBH4KuIZCcTTAt4HfjjH+YalfU5KqTX8mR09/hge27WbLzgN092XoaE6xce0S7pmG1YVvWNZxJmno6s2MOkxJklQ7puTjqhjjg8CDIYRmYDZwIsbYNxWvJUnVpj+TY+e+bj718A4Gh01p2t2X4aHte3jkqX1s3rSONcs6SpI4jJYQLO1s5rql7cxvbeSaRW0OQ5KkGjelHxvFGPtijIdMGCRp4noGMuckDMMNZvN88uEd59QaTFY+H3lu/wke2r6HN04NnLP/nVcu4NrF7SYMkqSpTRokSZPTl87ywNbdYyYMQwazeR7cupv+dPaCX2vry0d59LtH6E/neOzFI06dKkkaU8mThhDC+hDC34YQjoQQMiGE3ChfF/5XTpKqWCCwZef51sgs2LLrIIX5JS7M9Utmk6grHN87mOP0oL+aJUmjK2lNQwjhfcCXgQTwGvAi4F8hSZqgZCLQ3TexYUddvWmSiYklDdlcnkRdGDHUqKOlnnWXdZKoC6y9dDZJC50lSWModSH0Z4AM8L4Y4z+W+NySVPWyuUhHc2pCiUNnSz3ZXGS8WugYIy8fOc22l45yx+p5rJzfOmL/zZfPudiQJUk1oNQfK10LfNGEQZIuTCSyce2SCbXduGYxMH4dwq79J/i7b75Oz0CWrS8dI5Mbv1ZCkqTRlDppOA10lficklQzmuuT3LN+BQ3J8X89NyTruHv9CprOs9Db1Ze00VRf6IrI5PJ096ZLFqskqXaUOmn4F+DmEp9TkmpKa2OKzZvWjZk4NCTr2LxpHa2NqRHP5/ORfH5kz0NjKsE7Lp/Lmktns+mWy5jf1jhlcUuSqlepk4b7gctDCL8YnNhbki5IUyrBmmUdPH7/ndx163I6W+qBQg3DXbcu5/H77zxnYbcD3X382dOvsWv/iXPO95Yl7dyxej6NU7iCtCSpupW6EPq/AM8Dvwx8KoTwHHBilHYxxvhjJX5tSaoaTakETakE925YxX0bVpNMBLK5CMRzhiS9evQ0f/PcIQBO9h/nyoWttDSU+te7JKmWlfqvyqZh/76s+DWaCJg0SNJ5NA9LEMbqKLhsTgudLfV09aaJMfLGqQFWzJs1TRFKkmpBqZOG5SU+nyRpmBgj+ciZRdmg8O/1q+bxwuunuPWKuefUOkiSdLFKmjTEGPeV8nySpDcdOz3IYy8eZU5LPXdeOX/EvsvmtnDZ3JYyRSZJqnYOepWkGeBozyB/9o3XyMfIge4+rl3czrzWhnKHJUmqEaWePUmSNAXmzqpnSUcTAIHAoRP9ZY5IklRLLrqnIYSQu4DDYozRXg5JGkMuH0fULYQQuGP1PLa+dJTbV81j7ix7GSRJ06cUN+4Xsh6DazhI0ihODWTY/vIxMrk8H7x+8Yh9c2Y1sHHtkjJFJkmqZRedNMQYHeIkSSXQn87xp1/fRzqbB2DPsV6WW9wsSaoA3vBLUoVoqk+wekHrmccHuvvKGI0kSW+yrkCSyuTsugWAW1bOobsvzdtXzGFpZ3OZIpMkaSSTBkmaZgOZHE/tPs7BE/380LpLqRuWODTXJ/nojUvLGJ0kSecyaZCkaZTLRz7/jdc41Z8B4JsHT3L90tnlDUqSpPOwpkGSplGiLvCWxe1nHu/vsm5BklT57GmQpCk0Wt3C2ktn81pXH9ctaWfl/FllikySpIkzaZCkKZDN5dn52gm+ffAkP/y2S2lMJc7sSybq+MgNrrcgSZo5HJ4kSVPgr3cd5IlXjnGyP8PTe7rKHY4kSRfFpEGSpsBbl8w+8+8D3f3k8rF8wUiSdJEcniRJFymfjyOmTQVYtWAWL74xi2Wdzbxlcfs5+yVJmklMGiTpAsUYef7QKZ7afZyP3rCU9ubUmX0hBD5w3aIyRidJUuk4PEmSLtA/v3CEf/rOG/QMZNn28tFyhyNJ0pQxaZCkC3TNorYz/37j1AD96VwZo5Ekaeo4PEmSJmC0uoVFs5t465J2muoTrLusk1TCz2EkSdXJpEGSxhFjZPexXh5/6Sjfe81CFs9uGrH/XVctKFNkkiRNHz8Wk6Rx7Njbzd88d4juvgyPvXiEvFOnSpJqkEmDJI1j9cJWksVhSSf7M3T3pcsckSRJ08/hSTWiL50lEEgmAtlcJBJprvfyS8PFWOhFCOHN2oX2phTrlnfSO5jllsvn0lSfKFd4kiSVjXeNVa4/k6OnP8MD23azZecBuvsydDSn2Lh2CfesX0FrY4qmlDdB0usn+3nsxaNcv3Q2V13SNmLf25Z3jkgkJEmqNSYNVaw/k2Pnvm4+9fAOBrP5M89392V4aPseHnlqH5s3rWPNsg4TB9W0Fw/38JVvvQ7A9oFjXD5vFvXJN0dvmjBIkmqdNQ1VrGcgc07CMNxgNs8nH95Bz0BmmiOTKstlc5tpaSgkzgOZHK+f7C9zRJIkVRaThirVl87ywNbdYyYMQwazeR7cupv+dHaaIpPKb6h2YUhDMsGtK+excv4sPn7zZSyb01KmyCRJqkwmDVUqENiy88CE2m7ZdRBw+IWqX3dvmi/vOsjTe7rO2XfVJa28/7pFtDenyhCZJEmVzZqGKpVMBLr7JjbsqKs3TTJh0qDq9vrJfv7ymQPk8pED3X1ctaiNtsY3EwTrFiRJGps9DVUqm4t0TPAT086WerI5F6xSdVvQ2khnSz0A2XzkteN9ZY5IkqSZw6ShSkUiG9cumVDbjWsWAyYNqi5n1y3U1QXuWD2PxbOb+OGbLuXaxe1likySpJnHpKFKNdcnuWf9ChqS41/ihmQdd69fQZMLvalK9A5m+YfnD/PPLxw5Z9+SjmY+euMS5rc1liEySZJmLpOGKtbamGLzpnVjJg4NyTo2b1pHa6OFn6oOpwYyPPzkXr5z6BTPHzrJ4ZMD57SxdkGSpMkzaahiTakEa5Z18Pj9d3LXrcvPjOfubKnnrluX8/j9d7qwm6pKW2OKJR1NAMQIu4+eLnNEkiRVB8ekVLmmVIKmVIJ7N6zivg2rSSZCseg5OiRJM16M8Zyeg/Wr5tEzkOW2K+a63oIkSSXiXWONaB6WINixoJluMJtjx55ujp4e4EPXLx6ROMxurudH3napw5AkSSohkwZJM0oml+dPv76PnoHCKuavHDnNFQtaR7QxYZAkqbSsaZA0o6QSdVw+f9aZxy8fsW5BkqSpZk+DpIo2Wt3CzSvmcLC7nxuWdXDlwtYxjpQkSaVi0iCpIuXykef2n+DFwz384LqlJOreTBwaUwnrFiRJmkYmDZIqToyRLz27n0MnCuss7Hqtmxsv6xzRxoRBkqTpY02DpIoTQhhR3PzykdPEGMsYkSRJtc2ehhrRl84SCGfWaYjEEdOwSuU0Wt3CdUtm89LhHq5Y0Mr1S2fbsyBJUhl511jl+jM5evozPLBtN1t2HqC7L0NHc4qNa5dwz/oVtDamXBFaZRNj5LuHe3hmbxcfuWEpTfVv/l9M1AV+cN1SkwVJkiqAw5OqWH8mx8593dz2uUd5aPseuvsyAHT3ZXho+x5u++yj7NrXTX8mV+ZIVav+4fnDfPXbhzl2Os3Xdx87Z78JgyRJlcGkoYr1DGT41MM7GMzmR90/mM3zyYd30DOQmebIpIKV89+sW9h9tJf0GP9XJUlSeZk0VKm+dJYHtu4eM2EYMpjN8+DW3fSns9MUmWrVaIXMl89rYcW8Fm68rIMfvXkZ9Ul/JUmSVIn8C12lAoEtOw9MqO2WXQcBh4Fo6uw73svnv/EaXb3pEc+HEPjAdYu47Yp5NCStrZEkqVKZNFSpZCKcqWE4n67eNMmESYOmxtdfPc6WnQc52jPI1peOnNPjYN2CJEmVryaThhDCj4YQYvHrrjHa3BJC+EoIoSuE0BdC+GYI4WdCCDPi49BsLtLRnJpQ286WerI558DX1Lh8fgtDecGhEwOc6nconCRJM03NJQ0hhKXA7wCnx2nzQWAbcDvw18DvAfXAbwBfmIYwL1oksnHtkgm13bhmMWDSoIs3Wt3C/NZG3rqknasXtbHplston2AyK0mSKkdNJQ2hMA5iM3Ac+N9jtGkD/gDIAXfEGH8sxvgfgOuBrwMfCSF8bHoivnDN9UnuWb+ChvMUljYk67h7/QqaXOhNF+nIqQH+8pkDvHa875x9d66ez7uvWUhLg//PJEmaiWoqaQB+Gngn8Emgd4w2HwHmAV+IMT4z9GSMcQD4xeLDT09lkKXS2phi86Z1YyYODck6Nm9aR2ujn/zq4jx/6CR/9vRrHDzRz9aXjpDLW7cgSVI1qZmkIYRwFfBrwG/FGLeN0/Sdxe1XR9m3DegDbgkhNJQ4xJJrSiVYs6yDx++/k7tuXU5nSz1QqGG469blPH7/naxZ1uGK0Lpoy+a0kEoUfp109WY4fGqgzBFJkqRSqomxAiGEJPCnwGvAz5+n+eri9qWzd8QYsyGEPcA1wArghfO87rNj7LryPDGUTFMqQVMqwb0bVnHfhtUkE6FY9BwdkqQLFmMc0XswqyHJTcs7OdDdx/pV888kqJIkqTrUyl3jfwbWALfGGPvP07a9uD05xv6h52eXIK5p0zwsQbBjQRfqZH+GbS8dZfncFq5d3D5i343LOrhxWYdDkSRJqkJVnzSEEG6i0Lvwv2KMXy/FKYvb8043FGO8YYyYngXWliAWadrs7+rjy7sOks1HDp7oZ+X8WTQOy0BNFiRJql5VXdMwbFjSS8AvTfCwoZ6E9jH2t53VTqoJC9sbaaovJAn96Rx7jo01l4AkSao2VZ00ALOAVcBVwMCwBd0i8F+Kbf6g+NxvFh+/WNyuOvtkxSRkOZAFdk9p5FKZnb3mQipRx+2r5rGgrZEfXLeUqy5pG+NISZJUbap9eNIg8NAY+9ZSqHPYTiFRGBq69DXgR4D3AH9+1jG3A83AthjjYMmjlSpAfzrHk68eo6k+wS2Xzx2x74r5s7hi/iyHIkmSVGOqOmkoFj3fNdq+EMJnKCQNfxxj/MNhu74EfBb4WAjhd4bWagghNAK/Umzz+1MWtFRGXb1pvrhjPwOZHIm6wNWXtDG7+c2ZkEwWJEmqTdU+PGnSYoyngB8HEsBjIYQ/DCF8DngOuJlCUvHF8kUoTZ2O5hSzmwuL/eXyke8e7ilzRJIkqRKYNIwixvhlYD2Fxdx+APgpIAPcC3wsnj3YW6oSIQTuWD2P2c0pPnD9It62vLPcIUmSpApQ1cOTxhNj/AzwmXH2PwG8d7rikaZTJpdnx94uTg9k2XDNwhH7Lmlv4hM3X0ZdnUORJElSQc0mDVKtGsjkeOSpffQMZAG4elEbSzqaR7QxYZAkScM5PEmqMY2pBItmN515/PyhU2WMRpIkzQT2NEg16NYr5vL6yQHetryTq11vQZIknYdJg1Sl8vnItw6eZO/xXj5w3aIR06W2Nab45C3WLUiSpIkxaZCqUD4f+eIz+zl8cgCAF17v4epFI3sUTBgkSdJEWdMgVaG6usDSYcXN3z54EmcKliRJF8qeBqlKrVvewStHerh6UTtrL53tas6SJOmCmTRIM1iMkVeOnOa5/Sf40JrFpBJvdh42JBN83PUWJElSCZg0SDPY33/7MC8e7gHg2X3dvH3FnBH7TRgkSVIpWNMgzWBn1y3k8tYtSJKk0rOnQZrBrlnUxrcPnWRheyM3r5hDwp4FSZI0BUwapArVl84SCCQTgX3H+3hq93E+vGYxLQ1v/tjW1QX+zY1LTRYkSdKUMmmQKkx/JkdPf4YHtu1my84DdPdlaEzWcdUlbdQn63j/dYtoSiXOtDdhkCRJU82kQaog/ZkcO/d186mHdzCYzZ95fiCbZ9f+E3zz4EnmttRz88q5IxIHSZKkqWQhtFRBegYy5yQMw+XykU9/fic9A5lpjkySJNUykwapQuzv6uXeLz43ZsIwZDCb58Gtu+lPZ6cpMkmSVOtMGqQK8Nxr3Ty0fQ9P7+maUPstuw4C1jJIkqTpYU2DVEYxRrp60/Sncwxk8qRzE1tnoas3TTJh0iBJkqaHSYNUJr2DWV4/2U9/Os+sxhTXLGqnOXWQvsz4w5MAOlvqyeYi1kJLkqTpYNIgTaOegQyPvXiUzuZ62ppSAKSSgUvamrhsbjN7jp3mj57Ye97zbFyzGHD1Z0mSND2saZCmyatHTvN7j77Ck68e47GXjpKPkQVtDaya30p7c4rWxhQ/ccflNCTH/7FsSNZx9/oVNNWb80uSpOlh0iBNg5P9GXoGM/SlcxAhk8uTStQxv62RumGLs7U2pti8ad2YiUNDso7Nm9bR2piartAlSZIcniRNpYFMjkMn+ukdzJEIddy4rIMjPYO8+5qFLO1sPqd9UyrBmmUdPH7/nTy4dTdbdh2kqzdNZ0s9G9cs5u71K2htTLmwmyRJmlYmDVKJDWRyPPnqcfIxsrCtkRihrg4WtjVy9SWthBBG9C6crSmVoCmV4N4Nq7hvw2qSiUA2F4HokCRJklQW3oFIJXTk1ACf/8ZrHO0ZJJkIvP+ti1jU0cSC1gaSicmNBmweliDYsVBafeksgXAmIYvEEd9vSZI0kn8lpRLpHczS3ZemL50jxggEMvk8i2c3lTs0FfVncvT0Z3hg22627DxAd1+GjuYUG9cu4R6HfkmSNCaTBqkEegez7D7aC8DbVnTw3ddPs+GaBVwxf1aZI9OQ/kyOnfu6+dTDOxjMvrkWRndfhoe27+GRp/axedM61izrMHGQJOkszp4kXYBsLs/Te7p48pVjALQ0JGlpSDC/rYE7V83nJ9avYNWCQv2CKkPPQOachGG4wWyeTz68g56BzDRHJklS5TNpkCbp9GCWP/n6Pp545Rg79nZz/PQgACvmzWJBWyOJRN2k6xc0tfrSWR7YunvMhGHIYDbPg1t305/OTlNkkiTNDN7ZSJPUUp+gtbEwsi8fI8/tP1HegHRegcCWnQcm1HbLroOAPUSSJA1n0iBNUgiBO1bPp6k+wZ1XzufO1fPLHZLOI5kIdPdNbNhRV2+aZMKkQZKk4SyElsYQY+T5Q6d4/eQA33v1ghH75rU28GO3LiflMKQZIZuLdDSnJpQ4dLbUk81Fp7mVJGkY73ikUWRzeb6wYz//9J03+PbBk+w73ntOGxOGmSMS2bh2yYTablyzGIhTG5AkSTOMdz3SKJKJOjpb6s88fnZfdxmj0cVqrk9yz/oVNCTH/5XXkKzj7vUrXHlbkqSzmDRIY7h15Vya6xO8bUUn3//WReUORxeptTHF5k3rxkwcGpJ1bN60jtbG1DRHJklS5fPjNNW0GCN7jvXynddP8d5rL6Gu7s0C2JaGJJ+ybqFqNKUSrFnWweP338mDW3ezZddBunrTdLbUs3HNYu52RWhJksZk0qCaFWPk7771Oi+/cRqA5ztP8ZYl7SPamDBUl6ZUgqZUgns3rOK+DatJJgLZXASiQ5IkSRqHd0SqWSEE5s5qOPP4mX1d5PMWwNaC5vokTfUJUok6muoTJgySJJ2HfylV025Y1sF3Dp3i0s5mblk5Z8TwJEmSJBWYNKgmvH6yn6f3dPGeaxfSkHxzzHoqUceP3rzMYUi6aH3pLIFwZshTJNJsD4YkqUr4F01V7/GXj/LM3sKUqTv2dHPrFXNH7Ddh0MXoz+To6c/wwLbdbNl5gO6+DB3NKTauXcI9FldLkqqEd0uqenNa3qxb+NcDJxjM5soYjapJfybHzn3d3Pa5R3lo+54zK05392V4aPsebvvso+za101/xv9zkqSZzaRBVe+qS1pZNLuRlfNn8W/ftmzE8CTpYvQMZPjUwzsYzOZH3T+YzfPJh3fQM5CZ5sgkSSotkwZVje7eNP/3Xw9x6qwbtBACH16zhPdft4j25tIv3NWXztKfzpHJ5elP5+hLZ0v+Gqo8feksD2zdPWbCMGQwm+fBrbvp9/+FJGkGs6ZBVeFf959g60tHyeUjdSHwvrdeMmJ//RirAF8Mx7LXtkBgy84DE2q7ZddB7tuweoojkiRp6tjToKowZ1Y9ueIaCy8f6aG7Nz2lr+dYdiUT4cx1P5+u3jTJhNP5SpJmLpMGVYUlHc1cubBQu/BDN11KR0v9lL6eY9mVzUU6JjjcrbOlvrjytCRJM5NJg2aU3sEs//j8YV4/2X/OvnddtYB/c+NSFrQ1TmkMjmUXQCSyce2SCbXduGYxYNIgSZq5TBo0Y7x69DQPP7mX5w+d4rEXjxLjyJuw+mQdIUz9EJDJjmUHh6VUo+b6JPesX0HDeeplGpJ13L1+BU0u9CZJmsFMGjRjzG1pIF+sWzh8coDXuvrKEodj2TWktTHF5k3rxkwcGpJ1bN60jtbG0s/aJUnSdDJp0IzR3pxi7bIOOlvq+fCaxSyb01KWOBzLriFNqQRrlnXw+P13ctety+ks1tJ0ttRz163Lefz+O1mzrMNZtCRJM5795ao4g9kcO/Z0s6CtgSsWtI7Yd9PyTt6+Yg6JuvJ9ej80lv2h7XvO29ax7NWvKZWgKZXg3g2ruG/DapKJUEwUo0OSJElVw79oqiiHTw7wf//1EKcHs7Q2JrlsbgupxJsdYsP/XS5DY9kfeWrfuMXQjmWvLc3DrrMdC5KkalP+OzBpmNnNKfLFAueegSwvvH6qzBGNzrHskiSplpg0qKI0phK8Y+VcZjUkefc1C3nL4vZyhzQqx7JLkqRa4rgJlUUuH3lu/wkSdYHrl84ese+aRW1csWAWDcnKvuF2LLskSaoV3tlo2p3sz/DlXQfp6k1Tn6xj5fxZzGp4879iCKHiE4bhHMsuSZKqncOTNO1aG5IMTX6UzubZ9Vp3eQOSJEnSuEwaNO3q6gLrV82nPlnH7avmcsvlc8sdkiRJksbh8CRNmRgj3z3cQ3dvmltWjkwMLp3TzI/dupxGx/NIkiRVPJMGTYnBbI7/s+sQB0/0EwKsnD+L+W2NI9qYMEiSJM0MDk/SlKhP1JFKFgoXYoRv7Okqc0SSJEm6UCYNmhIhvFm3cONlHWy4ZkG5Q5IkSdIFcniSLtprx/t49ehp7lg9jxDCmec7W+qtW5AkSaoCJg26YDFG/u5br/PyG6eBQnHz5fNmjWhjwiBJkjTzOTxJFyyEQHP9m0nB1189ToyxjBFJkiRpKtjToIty84q5vPTGaZbPbeEdK+eOGJ4kSZKk6mDSoAk5cmqAXftP8D1XLSBR92Zi0FSfYNMtlzkMSZIkqYqZNOi8tr10lJ2vdRMjzGttYO2lHSP2mzBIkiRVN2sadF7N9QmGShWe3tNFNpcvb0AVpi+dpT+dI5PL05/O0ZfOljskSZKkkrKnQee15tIOvn3wJO3NKdavmk8yYa4J0J/J0dOf4YFtu9my8wDdfRk6mlNsXLuEe9avoLUxRZO9MJIkqQqYNOiMk/0Zntp9nPWr5o0YcpSoC/zguktpTNVZ6FzUn8mxc183n3p4B4PZN3teuvsyPLR9D488tY/Nm9axZlmHiYMkSZrx/MhYADy3/wR/8uRevnPoFF/fffyc/U31CROGYXoGMuckDMMNZvN88uEd9AxkpjkySZKk0jNpEAAt9Qmy+ULhwjf3n+T0oOPyx9KXzvLA1t1jJgxDBrN5Hty6m35rHCRJ0gxn0iAAVs6fxdLOZha0NfLRG5cwq8GRa2MJBLbsPDChtlt2HQTsoZEkSTObd4Y1pj+d46ndx1lz6WxmN9efeT6EwPvecklV1y30pbMEAslEIJuLRCLN9ZP/EUgmAt19Ext21NWbJpmozu+nJEmqHSYNNeSVIz3803eOMJDJcWogwwevXzxif1N9dRbslnqWo2wu0tGcmlDi0NlSTzYXsRZakiTNZA5PqiGzGlIMZnMA7D7ay+sn+8sc0dQbmuXots89ykPb95y50R+a5ei2zz7Krn3d9GdyEz5nJLJx7ZIJtd24ZjEQLyR0SZKkimHSUEMWtjdyzaJ22ptSfOD6RSxsayx3SFNuKmY5aq5Pcs/6FTQkx//xaUjWcff6FTRdwBAoSZKkSmLSUGNuu2IuH795GZfPm1W1tQtDpnKWo9bGFJs3rRszcWhI1rF50zpaG1OTilmSJKkSmTTUmMZUomZWdJ7KWY6aUgnWLOvg8fvv5K5bl9PZUigq72yp565bl/P4/Xe6sJskSaoajptQ1ZrqWY6aUgmaUgnu3bCK+zasPjMrE0SHJEmSpKpS9R85hxDmhBDuCiH8dQjhlRBCfwjhZAhhewjhx0IIo34PQgi3hBC+EkLoCiH0hRC+GUL4mRCCHx3PEEOzHE3E0CxHF6K5PklTfYJUoo6m+oQJgyRJqjpVnzQAHwX+AHgb8A3gN4G/Aq4F/hD4i3DW4P4QwgeBbcDtwF8DvwfUA78BfGG6AtfFcZYjSZKk0qiFpOEl4APAkhjjj8QY/1OM8VPAlcB+4AeAjUONQwhtFJKMHHBHjPHHYoz/Abge+DrwkRDCx6b5PegCOMuRJElSaVR90hBj/FqM8f/GGPNnPX8Y+N/Fh3cM2/URYB7whRjjM8PaDwC/WHz46amLWKXkLEeSJEkXr9Y/Wh2qkh0+1+Y7i9uvjtJ+G9AH3BJCaIgxDo538hDCs2PsunJSUeqCDZ/l6MGtu9my6yBdvWk6W+rZuGYxd1/AitCSJEm1pmaThhBCEvh48eHwBGF1cfvS2cfEGLMhhD3ANcAK4IUpDVIl4SxHkiRJF6eW75h+jUIx9FdijP8w7Pn24vbkGMcNPT/7fC8QY7xhtOeLPRBrJxZmZetLZwmEMzfikUhzhd6ID4/LjgVJkqSJq8y7uykWQvhp4D7gu8CPTvbw4ramp9rpz+To6c/wwLbdbNl5gO6+DB3NKTauXcI9DvmRJEmqKjWXNIQQfhL4LeA7wLtijF1nNRnqSWhndG1ntas5/ZkcO/d186mHdzCYfbO+vLsvw0Pb9/DIU/vYvGmdKyJLkiRViaqfPWm4EMLPAL8LfBu4sziD0tleLG5XjXJ8ElhOoXB69xSFWfF6BjLnJAzDDWbzfPLhHfQMTGw1ZkmSJFW2mkkaQgj3U1ic7TkKCcORMZp+rbh9zyj7bgeagSfPN3NStepLZ3lg6+4xE4Yhg9k8D27dTX86O247SZIkVb6aSBpCCL9EofD5WQpDko6N0/xLwDHgYyGEG4edoxH4leLD35+qWCtdILBl54EJtd2y6yBvloBosvrSWfrTOTK5PP3pHH0mYJIkqUyqvqYhhPAJ4L9SWOH5ceCnQzjnRnZvjPFhgBjjqRDCj1NIHh4LIXwB6KKwqvTq4vNfnJ7oK08yEejum9iwo67eNMmEScNkWWQuSZIqTdUnDRRqEAASwM+M0WYr8PDQgxjjl0MI64FfAH4AaAReAe4FfjvGWLMzJ2VzkY7m1IQSh86WerK56PSmk2CRuSRJqkRVPzwpxviZGGM4z9cdoxz3RIzxvTHGjhhjU4zxLTHG34gx5srwNipGJLJx7ZIJtd24ZjE1PjPtpFlkLkmSKlHVJw0qreb6JPesX0FDcvz/Og3JOu5ev8IVlyfBInNJklSpTBo0aa2NKTZvWjdm4tCQrGPzpnW0NqamObKZzSJzSZJUqUwaNGlNqQRrlnXw+P13ctety+lsqQcKNQx33bqcx++/0zH3F8Aic0mSVKkcO6IL0pRK0JRKcO+GVdy3YTXJRCCbi0B0SNIFsshckiRVKnsadFGa65M01SdIJepoqk+YMFwEi8wlSVKlMmmQKoRF5pIkqVKZNEgVxCJzSZJUiUwapApikbkkSapEjm+QKoxF5pIkqdJ4ByJVqOZhCYIdC5IkqZwcniRJkiRpXCYNkiRJksZl0iBJkiRpXCYNkiRJksZl0iBJkiRpXCYNkiRJksZl0iBJkiRpXCYNkiRJksZl0iBJkiRpXCYNkiRJksZl0iBJkiRpXCHGWO4Yak4I4XhTU1PnVVddVe5QJEmSVKVeeOEF+vv7u2KMcy72XCYNZRBC2AO0AXun+aWvLG6/O82vq4nzGlU+r1Hl8xpVPq9R5fMazQznu06XAadijMsv9oVMGmpICOFZgBjjDeWORaPzGlU+r1Hl8xpVPq9R5fMazQzTeZ2saZAkSZI0LpMGSZIkSeMyaZAkSZI0LpMGSZIkSeMyaZAkSZI0LmdPkiRJkjQuexokSZIkjcukQZIkSdK4TBokSZIkjcukQZIkSdK4TBokSZIkjcukQZIkSdK4TBokSZIkjcukoUqEED4SQvidEMLjIYRTIYQYQnjkPMfcEkL4SgihK4TQF0L4ZgjhZ0IIiemKu5ZM5hqFEK4IIdwfQvhaCGF/CCEdQngjhPB/Qgh3TnfsteJCfo7OOv6h4jExhLByKmOtVRf4uy6EED4RQnis+PuuP4SwJ4TwFyGEVdMVe62Y7DUKITSEEH4yhPB0COFYCOF0COGFEMJvhxCWTWfstSCEMCeEcFcI4a9DCK8Ufx5OhhC2hxB+LIQw6r2h9wzTZ7LXaLruGZKlOpHK7heB64DTwAHgyvEahxA+CPwVMAB8EegC3g/8BvAO4KNTGWyNmsw1+m/ADwLfAb5C4fqsBj4AfCCE8P/EGH97asOtSZP6ORouhPB+4FPFY2dNSXSCyf+uawT+Evh+4EXgz4AeYBFwG7AKeGkK461FE75GIYQk8C8U/u58F/hzYBBYB/wU8PEQwi0xxu9MddA15KPA7wOvA48CrwELgI3AHwLfF0L4aBy2+q/3DNNustdoeu4ZYox+VcEXcCdwBRCAO4AIPDJG2zbgCIVfzDcOe74ReLJ47MfK/Z6q7WuS12gTsGaU59cD6eK1u6Tc76naviZzjc46bh5wGPgC8FjxuJXlfj/V+DXZawT8XrHN/wDqRtmfKvd7qravSf6u+2hx/z+ffX2AXy7u+6Nyv6dq+gLeSeGG/+zv90IKN6cR+IFhz3vPUPnXaFruGRyeVCVijI/GGF+Oxf8l5/ERCjc5X4gxPjPsHAMUPiEC+PQUhFnTJnONYowPxxh3jfL8Vgo3pfXALaWPsrZN8udouAeL258sdUwaaTLXKIRwOfATwA7gF2KM+VHOl5mCMGvaJH+OVhS3fzfK9fk/xe280kWnGOPXYoz/9+zvd4zxMPC/iw/vGLbLe4ZpNtlrNF33DA5Pqk3vLG6/Osq+bUAfcEsIoSHGODh9YWmChm5ysmWNQgCEEDYBHwI+HGM8HkIob0Aa7oco1O79MdBWHEK2FDgOfC3G+Eo5gxMAzxe33xdC+K2zbpK+v7j952mOqZaN9vfFe4bKMtl7gJLdM5g01KbVxe0543hjjNkQwh7gGgqfAL0wnYFpfMWiwHdR+CW9rczh1Lzi9fgtCkMvvlzmcHSudcVtO/AqMGfYvhhC+H3gp2OMuWmPTEP+DthCYaz2t0II/0xhOMUNwK3A7wC/W77wakexvuTjxYfDEwTvGSrEONdorPYlvWdweFJtai9uT46xf+j52VMfiiYqhNAAfB5oAD4TY+wuc0g1rTh7xR9TKPb86TKHo9HNL27/K/AM8BaglcIf0VeBfwf8UnlCE0BxCNNHgM9QuDn9aeDfU6iL2Ab8mUndtPk14FrgKzHGfxj2vPcMlWOsa3SOqbhnMGnQaIbGV0x2XLemSHFKuz+lMEvFF4H/Wd6IBPwshSKzHzeBq1hDU0G+TmH42LdjjKdjjF+jcKOaB+4NIdSXLcIaV5zd6osUEoWfBC6hcJP6XmAZsK04c4+mUAjhp4H7KMxg9aOTPby49Z5hCk3mGk3VPYNJQ20a+lSgfYz9bWe1UxkVf/gfoTDLyF8A//YCCnVVQiGEK4D/DmyOMX6l3PFoTEPJ3FdjjP3Dd8QY/xXYQ6Hn4arpDkxn/EcKv9t+Icb4QIzxcIzxVIzx7ykkdikKQwA1RUIIP0nhe/wd4M4YY9dZTbxnKLMJXKPhbafsnsGkoTa9WNyes6hRcbzccgoFM7unMyidq3g9/hz4GIX55X84xmgBdPldQ6HL95PDFnOLIYRIofcB4OXicx8qW5Qa+l13Yoz9Q0lF09SHojEMFTs/evaOYmLXBSwLIcw5e78uXgjhZyjUjHybws3o4VGaec9QRhO8RkNtp/SewULo2vQ14EeA91D4zzXc7UAzsM1ZEMqrOGTiL4APAn8CfHK0KSNVFnuBh8bY9z4Kc2n/JXCq2Fbl8S8UFgi79uwdxfG+VxQf7p3GmDRSQ3F7zrSqxWs09Cl2etoiqhEhhPspjJF/DvjeGOOxMZp6z1Amk7hG03LPYE9DbfoScAz4WAjhxqEni2NLf6X48PfLEZgKin8s/5rCD/9DmDBUlBjjczHGu0b74s1P5X6++NxzZQy11v09hU8/3x1C+N6z9v0SheEWW8f75E5T7vHi9ueLv/eG+wyFDzd3xBh7pjWqKhdC+CUKN6PPAu8a72YU7xnKYjLXaLruGYJDo6tDcQjEh4oPFwLvpvDHcugX8rEY478/q/2XKCwJ/wUKXcAfoDB7xZeAf+O4+dKazDUKIWymsMLjMeD/ZfQCs8dijI9NWcA1aLI/R2Oc4zEKQ5SucB2A0ruA33W3Av9IYXGjvwb2UZiK9XbgKHBrjPGcqSR14Sb5u24x8BSwhEKPz1eBfgoFnDcV//2uGOPXpyf66hdC+ATwMJCjMKXtaLUIe2OMDw875kN4zzBtJnuNpu2eYbRlov2aeV8UPpGJ43ztHeWYdwBfoTCutx/4FoUZYRLlfj/V+DWZa0RhBcfx2kYKU6iV/X1V09eF/ByNco6ha7ey3O+nGr8u8Hfd1RRmEDlCYZjLfuABYEm53081fk32GlEYmvQ/KczxP1C8RvuAzcCV5X4/1fY1gesTKdxgnn2c9wwVeo2m657BngZJkiRJ47KmQZIkSdK4TBokSZIkjcukQZIkSdK4TBokSZIkjcukQZIkSdK4TBokSZIkjcukQZIkSdK4TBokSZIkjcukQZIkSdK4TBokSZIkjcukQZIkSdK4TBokSRckhHBHCCGGED5T7lguRgjhsRBCLHccklTJTBokqYYUb/LP93VHueMspRDCw8X3dVm5Y5GkmSpZ7gAkSWXxy+Ps2ztdQVSIjwPN5Q5CkiqZSYMk1aAY42fKHUOliDG+Vu4YJKnSOTxJkjSuEMKCEMJDIYQ3Qgj9IYTnQgifGKf93hDC3jH2fWasIVAhhCtDCH9UPH4whHAkhPB4COHTZ7X7UAjhkRDCSyGE3hDC6RDCsyGEnw4h1J3VNgJDse4ZNgRr77A2o9Y0hBDqQgg/EULYUXyN3uK/P3326wy9VvFcc0MID4YQXi++j+dDCJ8c6/slSTOBPQ2SpDGFEOYATwIrgO3Fr0uA/w38Ywlf533AXwINwFeBPwdmA9cBPwf8/rDmvwbkgW8AB4F24J3AbwHrgB8d1vaXgQ8Vz/NbwIni8yc4vz8FfhjYD/whEIEPA/8vcCvwI6McMxt4AkgDXwIagY8AfxRCyMcY/3gCrytJFcekQZJq0DgzHg3EGH9t2ONfpZAw/GaM8WeHHf+7wNdLFMtc4M8o/E16Z4xx61n7l5x1yPtijK+e1aYO2Ax8PITwuzHGb0BhGFaxAPq64nvYO8GYfohCwrALuD3GeLr4/C8CW4EfDiH8XYzxz8469DrgIeCeGGOueMxvAN8E7gdMGiTNSCYNklSb/ssYz5+k8Ek+IYQUhU/Te4DPDG8UY3wmhPB53hz6czE+AbQBv312wlB8rQNnPX51lDb5EMJvUShqfjeFXoiL8ani9j8OJQzF1+kNIdwP/DNwF4VkZ7g+4N6hhKF4zHdCCE8At4cQWmOMPRcZmyRNO2saJKkGxRjDGF+zhzW7ksKsQs/FGE+OcprHShTO24vbv59I4xDCnBDCr4UQvlmsNYjFmoRni00WlyCmtRSGQD02yr6tQA5YM8q+l2OMp0Z5fn9xO7sEsUnStLOnQZI0lvbi9o0x9h8u0evMLm4Pnq9hCGE2sANYDjwN/AnQBWSL5/l/KNRFXKx2oCvGmD57R4wxG0I4Bswf5bgTY5wvW9wmShCbJE07kwZJ0liGehcWjLF/4RjP54H6MfbNHuW5E8XtYuBb54npLgoJwy+fPW1sCOFmCklDKZwEOkMIqRhj5qzXSQJzgdF6FCSpKjk8SZI0lu9SGKN/fQihfZT9d4xxXDewoFgTcbYbR3nuqeL2+yYQ08ri9q9G2bd+jGOG6gsm8yn/Lgp/I28fZd/txXPtnMT5JGlGM2mQJI2q+An754FWziqEDiHcyOhTjkJh2FASGLE2QQhhE/COUdr/MYVP7T8dQjjnJv2s2ZP2Frd3nNVmDfCfxojneHF76Rj7R/NHxe2vhhDOrBZd/PfQ7FIPTeJ8kjSjOTxJkmrQOFOuAnw5xvhc8d8/D7wL+JliojC0TsMPAl8BPjDK8b9DIWH4/RDCuygUAV8H3AL8LfD9wxvHGI+FEH6YwroGj4YQ/p7CFKVtwFuBpRSGJEGhhuE/AL8ZQrgTeBm4onjOLcW4zvYvxWP+IITwJeA0cCLG+LtjfQNijH8WQvgg8G+A50MIX6awTsOHirH8RYzx82MdL0nVxqRBkmrTWFOuQuHT/OfgzA39O4D/AbyfwvCiF4FPF9udkzQUpxj9nmHHZIHHgZuBjZyVNBSP+btiUnI/hSRlA4VhTt+lsFbEULtDIYTbKHzafyuF6VW/C/w7CtOgnpM0xBj/IYRwH/DjwM9SqLfYB4yZNBT9EIWZkj4F3FN87gXgfzFysTlJqnohxljuGCRJkiRVMGsaJEmSJI3LpEGSJEnSuEwaJEmSJI3LpEGSJEnSuEwaJEmSJI3LpEGSJEnSuEwaJEmSJI3LpEGSJEnSuEwaJEmSJI3LpEGSJEnSuEwaJEmSJI3LpEGSJEnSuEwaJEmSJI3LpEGSJEnSuEwaJEmSJI3LpEGSJEnSuEwaJEmSJI3r/wNI+It1dUbqMgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 261, "width": 390 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "y_pred = mod_edu.predict()\n", "sns.scatterplot(x = df_income['Education'], y = df_income['Income'])\n", "sns.lineplot(x = df_income['Education'], y = y_pred, alpha = .5, linestyle = \"dotted\")\n", "plt.xlabel(\"Education\")\n", "plt.ylabel(\"Income\")" ] }, { "cell_type": "markdown", "id": "765a4682", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Comparing $\\hat{Y}$ to $Y$ directly\n", "\n", "If we had a perfect model, $\\hat{Y}$ should be *identical* to $Y$." ] }, { "cell_type": "code", "execution_count": 10, "id": "6a884d49", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Real values: $Y$')" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwkAAAIRCAYAAAABafHOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAABrlklEQVR4nO3deXxU933v/9dHM6MVSUhiFyAWG7zbgPFuY7LQJM1KnMbN0uDUsZuuqd3W7W3T5t6mt016e7M0vamdutDEuXVaB+eX5KbOUjsstrExIna9LwIZsFklkNCMNNvn98eMYEYLWhhpFr2fj8c8DnPO95zzGXEE5zPn+/1+zN0RERERERHpV5bvAEREREREpLAoSRARERERkSxKEkREREREJIuSBBERERERyaIkQUREREREsihJEBERERGRLEoSREREREQki5IEERERERHJoiRBRERERESyKEkQEREREZEsShJERERERCSLkgQREREREckSzHcAU5GZ7QHqgL15DkVEREREStcioMvdF491RyUJ+VFXVVXVeP755zfmOxARERERKU0vvPACkUhkXPsqSciPveeff37jrl278h2HiIiIiJSoVatW0draunc8+2pMgoiIiIiIZFGSICIiIiIiWZQkiIiIiIhIFiUJIiIiIiKSRUmCiIiIiIhkUZIgIiIiIiJZlCSIiIiIiEgWJQkiIiIiIpJFSYKIiIiIiGRRkiAiIiIiIlmUJIiIiIiISJaiSxLM7CYz+3sz22ZmXWbmZnbfCPtcY2Y/MrMOMwub2TNm9hkzC5xhn0+Y2ZNmdtLMTpjZz83s3bn/RCIiIiIyGcLROJFoglgiSSSaIByN5zukghXMdwDj8GfApcBJYD9w3pkam9n7gO8CvcB3gA7gPcCXgGuBDw2xz/8C7kwf/xtAOXAz8AMz+x13/1quPoyIiIiITKxILEF3JMbdW9vY3LqfznCMhuoQ61fO5/Y1S6itDFEVGva74ymp6J4kAL8PLAPqgE+fqaGZ1ZG6yU8AN7r7r7v7HwKXAY8DN5nZzQP2uYZUgvAacIm7/767/xawilSC8b/MbFFOP5GIiIiITIhILEFreyfXf/ER7t2+h85wDIDOcIx7t+/h+i88wu72TiKxRJ4jLSxFlyS4+yPu/oq7+yia3wTMBO5396cyjtFL6okEDE40fiO9/Ct378zYZy/wD0AFcMs4wxcRERGRSdTdG+OTm3bSF08Oub0vnuSWTTvp7o1NcmSFreiShDF6S3r50BDbtgJh4BozqxjlPv8xoI2IiIiIFKhwNM7dW9qGTRD69cWT3LOljYjGKJxS6knC8vTy5YEb3D0O7CE1LmMJgJnVAM3ASXd/c4jjvZJeLhvNyc1s11AvRhhHISIiIiJnzzA2t+4fVdvNuw8AltPzJ5POrvYODnf15vS4k6EYBy6PRX16eWKY7f3rp4+zvYiIiEhRC0fjGEYwYMQTjuNUl5fGLWIwYKfGIIykoydKMJC7JMHd+d4vDtB+LMysugpuXr2QQFluk5CJVBpXwPj1/02NZnxDplG1d/dVQ5409TRh5RjPKSIiIpIzU2HGn3jCaagOjSpRaKwpJ55wcvWRzYxls2tpPxbmcFcfz7/RxcXz60fesUCUenej/m/+h/sbqRvQbqT2Iz1pEBERESl4U2XGH8dZv3L+qNquX9HM2L83PrML59WxZGYN154zgwvm1Y28QwEp9SThpfRy0BgCMwsCi4E40Abg7j3AAWCamc0d4njnppeDxjiIiIiIFIupMuNPdXmQ29csoSJ45lveimAZt61ZQtU4u1lF40m2v3KUnr7sgc9mxnsvnccVixuLqqsRlH6S8HB6+Y4htt0AVAOPuXvfKPd554A2IiIiIkVlqs34U1sZYuOG1cMmChXBMjZuWE1tZWhcx9/fGea+He3s3NvBz186Mmi7WXElB/1KPUl4ADgK3Gxml/evNLNK4PPpt18fsM8/ppd/amYNGfssAn4L6AM2TlTAIiIiIhMp3zP+TLaqUIAVLQ1su2stt163mMaaciA1BuHW6xaz7a61rGhpGPf4i0TSORFJPXF5+VA3+zvDOYs9n4pu4LKZvR94f/rtnPTyajPblP7zUXf/AwB37zKzT5FKFn5uZveTqpr8XlLToz4AfCfz+O7+mJn9b+AO4BkzewAoBz4MNAK/ky6sJiIiIlJ08jnjT75UhQJUhQLcsW4Zd65bfmomJ/BxdzHq19JUw4Xz6nj1yEnWLJtJ8/Sq3ASdZ0WXJACXAZ8YsG5J+gXQDvxB/wZ3/56ZrQH+FPggUAm8SioJ+OpQlZvd/U4zewb4beA2IAm0An/r7j/M6acRERERmUT5nPEn3zKndh3PZwpH48TiTn11dtekG5bN5NpzZlBTUYy31kMruk/i7p8DPjfGfR4F3jXGff4F+Jex7CMiIiJS6Ppn/Ll3+54R207EjD/FyN158WA3P3/pCI01IT60agFlGQORK0sli8pQ6mMSRERERCTDZM34U0q6InF++vwhemMJ3jjey9P7j+c7pAmnJEFERERkipnoGX9KTX11iNWLGgGoqwqdGvxcypQaioiIiEwxmTP+3LOljc27D9DRE6Wxppz1K5q5rUQqLo9XMulZ3YkArljcSJnBioUNlI/wFKYUKEkQERGRkhCOxjHs1Mw1jmcNVJVsEznjT7FKJp1dr3fy4ptd3HzFQkKB08lAoMy4cklTHqObXFPzChAREZGSEYkl6I7EuHtrG5tb99MZjtFQHWL9yvncPsW/ER+Ns53xp1S4Ow/uPsDrHak6B4+/dowbls3Mc1T5U/rPSkRERKRkRWIJWts7uf6Lj3Dv9j2npvXsDMe4d/serv/CI+xu7yQSS+Q5Uil0ZsbyObWn3h84HiGRnLozOylJEBERkaLV3Rvjk5t20hdPDrm9L57klk076e4dXfEwmdounFfHkpk1XHfuDD58+QICZcVfSG68lCSIiIhIUQpH49y9pW3YBKFfXzzJPVvaiETjkxSZFLpoPMm2V47Q05d9TZgZ7710HqsXNQ4auDzVKEkQERGRomQYm1v3j6rt5t0HgKl90ycp+zrCfGtHO0/t7eSRlw4P2m6m6wSUJIiIiEiRCgbs1BiEkXT0RAkGdPMn4A5dkdR188qhk+zvDOc5osKkJEFERESKUjzhNFSPrthXY015enpPmeoWNlVzUXM9laEAv3ThHJqnV+U7pIKkJEFERESKkuOsXzl/VG3Xr2gGlCRMNT19cU4M8bTp+nNn8GtXt3DBvDp1LxqGkgQREREpStXlQW5fs4SKEarfVgTLuG3NkilbIGwqcneee+ME33y8nf949k2SA6YyrQwFqKnQ9XAmShJERESkaNVWhti4YfWwiUJFsIyNG1ZTWzm6bklSGroicf7zhcP0xhK8eaKXX+w/nu+Qio6SBBERESlaVaEAK1oa2HbXWm69bjGNNeVAagzCrdctZttda1nR0qCKy1NMfXWI1YsaAairCjGjpiLPERUfPWcRERGRolYVClAVCnDHumXcuW45wYClBym7uhhNEYmkDyp8dsXiRgJlxmULplM+Qpc0GUy/OSIiIlISqjMSAj04mBoSSWdXeycvHuzi5tULs5KBQJlxxeLGPEZX3JRWiYiIiEjRcXe+t/sAj756lGMnozzedizfIZUUJQkiIiIiUnTMjPPm1p56/8bxCImkprnNFXU3EhEREZGidMHcOl470kPz9EpWLGigrEw1D3JFSYKIiIiIFLS+eIIn2jpY1dKQVd/AzHjPJXNVEG0CKEkQERGRvAhH4xh2ajYix7MGH4sA7OsI8+PnDtLdG6erN8a7L5mXtV0JwsTQb6KIiIhMqkgsQXckxt1b29jcup/OcIyG6hDrV87n9jVLqK0Mqa6BnOIO3b1xAF45dJL9nWHmN1TnOarSp4HLIiIiMmkisQSt7Z1c/8VHuHf7HjrDMQA6wzHu3b6H67/wCLvbO4nEEnmOVArFwqZqLmqup6o8wDsvnkPz9Kp8hzQlKEkQERGRSdPdG+OTm3bSF08Oub0vnuSWTTvp7o1NcmRSCE72xTkejg5af/25M/i1q1s4b06duhdNEiUJIiIiMinC0Th3b2kbNkHo1xdPcs+WNiLR+CRFJvnm7jx74ATffHwvDz17kOSAqUwrQwGNV5lkShJERERkUhjG5tb9o2q7efcBQN8YTxVdkTgPv3iYvliSN0/08ov9x/Md0pSnJEFEREQmRTBgp8YgjKSjJ0owoCRhqqivDnHF4sbUn6tCzJxWkeeIRM9tREREZFLEE05DdWhUiUJjTTnxhKNJjkpTIukEBhQ+W72okWCZcemC6YQC+h473/Q3ICIiIpPCcdavnD+qtutXNAM+YrupKByNE4kmiCWSRKIJwkU0diORdJ5oO8Z9O9qJDhibEigzLl/UqAShQOhJgoiIiEyK6vIgt69Zwn072s84eLkiWMZta5ZQpYGqWYq9voS78+DuA+zrCAPw2GtHuXH5rDxHJcNRqiYiIiKTprYyxMYNq6kIDn0LUhEsY+OG1dRWhiY5ssJWCvUlzIzz59aeen/wRC+JpJ4WFSolCSIiIjJpqkIBVrQ0sO2utdx63WIaa8qB1BiEW69bzLa71rKipaGgvxHPh1KpL3HB3DrOmTWNG5bN5FcuXzBoXIIUDj3HExERkUlVFQpQFQpwx7pl3LluOcGAEU844OpiNISx1pe4c92yMf0cw9E4hp36e3D8rGsS9MUTPP7aMS5f1Mi0itPHMjPefclcFUQrAvpNFBERkbzIvBHVg4PhjbW+xJ3rlo+q7USNcXj9WJifPH+Q7t443b1x3nPpvOzPowShKKi7kYiIiEgBm4j6EhM5xsEMuntTMy69evgk+zvDYz6G5J+SBBEREZEC1l9fYjT660uMZCLHOCxorObi5nqqywO86+K5NE+vGvMxJP+UJIiIiIgUsFzXlxjrGIfIGeownOyLczwcHbT+unNn8GtXL2L5nFp1LypSGpMgIiIiUsByXV8ic4zDhfPq+NhVLbzt/FlMqwhxsi/GT58/zLefaOe5N7qGHePg7jz3RhdbXzlCQ3U5H758AWUZMxVVapBJ0dOTBBEREZECl8v6EsGA0dUb56/efxFf+8hKXj7UzbovbeX8P3+IdV/ayiuHu/naR1byV++/iBOR2JBjHLoicR5+8TB9sSQHT/Sye9/xs/2IUmCUJIiIiIgUuFzWl4gnnL9ZfzGz6ip5x5e3svHRvVkDlzc+upd3fHkrs+sr+ev1Fw85xqG+OsSVixsBmF4dYlZtRQ4/rRQCdTcSERERKQI5qy9hztVLm3jr320548Dl3/p2K/955xrMnETSBxU+u3xRI8GAccn86YQC+t651OhvVERERKSIVJcHqSoPEAqUUVUeGHMBOnfY+OjeUQ1cvnf7Hp5o6+Bbj+8lOqB9oMxY1dKoBKFE6UmCiIiISBE52wrJYynO9m8791EdChAMlPHYa0e5cfms8YYtRUZJgoiIiEgRyFWF5LEUZ+uJJk7NWnSoq3fIbkdSmpQkiIiIiBS4/grJAwug9VdIvm9HOxs3rB7V4OX+4myjSRQaqkMsnlHDohk1XDZ/etY0p1La1IlMREREpMDlskLyWIqzfXDlfN5x4WxWLmxQgjDFKEkQERERKWC5rJAMp4uzDVdzoV9/cbbqipFrL0jpUZIgIiIiUsDGMtB48+4DwMjf+OeyOJuUJiUJIiIiIgVsLAONO3qiQ1ZIHmhgcbZpFalhqnVVQX792kVjKs4mpUkDl0VEREQK2FgGGjfWlBNPOMPd23f3xlLHqynPKs72O285FzPSNQ/GWJxNSpKeJIiIiIgUsLEMNF6/ohnwwcdw55n9x/nm4+089NxBksnTbarLg9RXh6irCo2rOJuUJiUJIiIiIgVsrAONh7rJ74rE+flLR4jGkxw80cvufZ0TFa6UCCUJIiIiIgXubAca11eHuHJxI5CqfTCnvmrCYpXSoOdJIiIiIgUuc6DxPVva2Lz7AB09URprylm/opnbBlRcjieSBAPZCcXlixoJBsq4ZH59euyByPCUJIiIiIgUgcyBxneuW04wYMQTTuZA43giyZN7O3j5YDcfubKF8ownD4EyY1VLQ56il2KjJEFERESkiFRnjDnInMXI3dm8+wAHOiMAPPraUdYunzXZ4UmJ0LMmERERkRJgZlw0r/7U+yNdfSSSg2c6EhkNPUkQERERKRHnz61lz9Ee5k2v5LIF0zEbubCayFCUJIiIiIgUmd5YgsdfO8blixqyZjQyM375krl5jExKhZIEERERkSLSfqyHnzx3iJN9cbp6Y7z30nl6YiA5pzEJIiIiIkWkzIyTfXEA2o70cOB4JM8RSSlSkiAiIiJSRBY0VnPJ/HpqKgK8+5K5zG+ozndIUoLU3UhERESkQHX1xognnMaa8qz11507g2vPmUFl5hyoIjmkJEFERESkwLg7z+w/wfZXj9JQXc7NqxdQVnZ63EFFUMmBTCx1NxIREREpMF2ROFtfPkI0nuRQVy+793XmOySZYpQkiIiIiBSY+uoQVy5pAqCxppw59VV5jkimGnU3EhEREcmzeCJJMJD93e2qlgaCAeOS5vpB20Qmmq44ERERkTyJJ5I89upRvrWjnb54ImtboMxYubBBCYLkha46ERERkTxwdzbvPsATezo4Ho7x2GvH8h2SyClKEkRERETywMy4uLn+1Puj3X0kkp7HiERO05gEERERkTw5b04te4720Dy9ikvm12NmI+8kMgmUJIiIiIhMsN5YgsdeO8rqRY3UVoZOrTcz3nXx3DxGJjI0JQkiIiIiE2jv0R5+8vxBevoSdPfGee+l8/TEQAqexiSIiIiITKBAmdHTl5q5qO1ID2+c6M1zRCIjU5IgIiIiMoEWNFZzyfx6plUEec+l82iersJoUvjU3UhEREQkR05EYiSSTmNNedb6686dwbXnzKAyFMhTZCJjoyRBRERE5Cy5O7/Yd5zHXjtGQ3U5N69eQFnZ6XEHFUElB1Jc1N1IRERE5Cx1ReJsf+Uo0XiSQ129tL7eme+QRM6KkgQRERGRs1RfHeLKJU0ANE0rp7lB4w6kuKm7kYiIiMgYxRNJgoHs71pXtTQQCqSqKA/cJlJspswVbGa/bGY/MbP9ZhYxszYz+3czu3qY9teY2Y/MrMPMwmb2jJl9xszUqVBERGSKiiWSbH/lKN98vJ2+eCJrW6DMWLGwQQmClIQpcRWb2ReAHwIrgYeArwCtwPuAR83sYwPavw/YCtwAPAj8A1AOfAm4f/IiFxERkULh7jzYeoCdezs4EYnx2KvH8h1SyQtH40SiCWKJJJFognA0nu+QpoyS725kZnOAPwAOAZe4++GMbWuBh4H/AdyXXlcHfANIADe6+1Pp9Z9Nt73JzG52dyULIiIiU4iZccmCeg4cjwBwrCdKIukEylQ9OdcisQTdkRh3b21jc+t+OsMxGqpDrF85n9vXLKG2MkSVppOdUCWfJAAtpJ6YPJGZIAC4+yNm1g3MzFh9U/r9N/sThHTbXjP7M+A/gU+jJwoiIiJTzvLZtew50kNzQxUXN9djpgQh1yKxBK3tnXxy00764slT6zvDMe7dvof7drSzccNqVrQ0KFGYQFOhu9ErQBS4wsxmZG4wsxuAWuBnGavfkl4+NMSxtgJh4Bozq5iAWEVERKQARKIJfvb8Ibp7Y1nrzYx3XjyXS+ZPV4IwQbp7Y4MShEx98SS3bNo56O9GcqvknyS4e4eZ3QX8b+B5M/secAxYCrwX+Clwe8Yuy9PLl4c4VtzM9gAXAkuAF850bjPbNcym88byGURERGTy7D3aw4+fO0g4mqAnGue9l85TQjBJwtE4d29pGzZB6NcXT3LPljbuXLeMqvKSv53Ni6nwJAF3/zKwnlRS9Cngj4EPAfuATQO6IdWnlyeGOVz/+uk5D1RERAQN1sy3YMAIR1MzF7Ud6eGNE715jmjqMIzNrftH1Xbz7gPA2JI3/W6N3pRIvczsj4D/CXwV+BpwkNS3+X8NfNvMLnP3Pxrt4dJLH6mhu68aJp5dpGZaEhEROUWDNQvD/IZqLl1QT9uRHtaeN4vm6SqMNlmCAaMzPLpuRB09UYKB0SUJ+t0au5JPEszsRuALwIPufkfGplYz+wCpbkV3mtk/unsbp58U1DO0uvRyuCcNIiIiY6bBmvlxIhwjnkzSNC17qOG158zgmqUzqNTPelLFE05DdWhUiUJjTTnxhDPSX5F+t8ZnKnQ3end6+cjADe4eBp4k9XNYkV79Unq5bGB7MwsCi4E40JbzSEVEZMrSYM3JlUw6ra938q0de3nouYMkk9kdBCqCASUIeeA461fOH1Xb9SuaGUXHDv1ujdNUSBL6vxqYOcz2/vXR9PLh9PIdQ7S9AagGHnP3vtyEJyIiU91YB2tG1I/6rHX3xnn0laPEEs7hrj5aX+/Md0gCVJcHuX3NEiqCZ75FrQiWcduaJSMOWtbv1vhNhSRhW3p5m5k1Z24ws3cC1wK9wGPp1Q8AR4GbzezyjLaVwOfTb78+oRGLiMiUMtGDNWWw+uoQVy1tAmDGtHLmN1TnOSLpV1sZYuOG1cMmChXBMjZuWE1tZWjEY+l3a/xKfkwCqZv+nwFvA14wswdJDVw+n1RXJAP+2N2PAbh7l5l9Kr3fz83sfqCD1HSpy9PrvzPpn0JERErWRA3WlNNiiSShQPZN56qFDZQHyriouV5VkwtIVSjAipYGtt21lnu2tLF59wE6eqI01pSzfkUzt41hoLF+t8av5JMEd0+a2buA3wJuBj5AqstQB/Aj4Kvu/pMB+3zPzNYAfwp8EKgEXgXuSLcfuQOciIjIKE3EYE1JiSWS7Gg7xiuHTvLRqxZSETz9gysrMy5dMD1/wcmwqkIBqkIB7li3jDvXLScYMOIJB3xMdRH0uzV+U6G7Ee4ec/cvu/tV7l7n7kF3n+Xu7x6YIGTs86i7v8vdG9y9yt0vdvcvuXtisuMXEZHSNhGDNQXcnc2t+3lqbycnIjEeffVovkOSMaouD1JVHiAUKKOqPDDmwmn63Rq/KZEkiIiIFLJcD9aUFLPsJwWdPTESSd0ETiX63Ro/JQkiIiIFIJeDNeW05bNrOX9uLW+/YDbrVzZr7MEUpN+t8VGSICIiUgAyB2veet1iGmvKgVQ/6VuvW8y2u9aq2NMZRKIJfvr8oUFz3ZsZ77hoLhc112OmBGEq0u/W+JjG4E4+M9u1cuXKlbt27cp3KCIiUoDC0TiGjXuw5lTTduQkP3n+EJFogiUza3jvpfOUEMiQptrv1qpVq2htbW1191Vj3bd0fyoiIiJFqjrjpkVfbo6sPFhGJJqaV6TtSA9vnOileXpVnqOSQqTfrdFTdyMREREpavMbqrl0QT21lUHev6JZCYJIDuhJgoiIiBSN4+EoiaTTNK0ia/1158zk2nNmZNVBEJHxU5IgIiIiBS+ZdHbvO87jrx2loaacm1cvzJqpqHyEKS5FZGz0GyUiIiIFr7s3zmOvHiWWcA539bGrvTPfIYmUNCUJIiIiUvDqq0NcvbQJgBm1FbQ0Vec5IpHSpu5GIiIiUnBiiSShQPZ3mSsXNlAeLOPCefUqiiYywZQkiIiIFJiBc7k7njV1Y6kY6nOGAmU89toxXj18ko9dtTBrIHJZmXHJ/On5C1hkCim9f3FERESKVCSWoDsS4+6tbWxu3U9nOEZDdYj1K+dz+5ol1FaGSqIq7HCf8wMrmplTX8mJSIxgWRmPvnqUt5w3O9/hikxJShJEREQKQCSWoLW9k09u2klfPHlqfWc4xr3b93DfjnY2bljNipaGok4UzvQ5//nRvYQCxnsumcfc6ZUcD8dIJF1di0TyQAOXRURECkB3b2zQjXOmvniSWzbtpLs3NsmR5dZInzOWcL7/9BtctaSJD6xoVoIgkidKEkRERPIsHI1z95a2YW+c+/XFk9yzpY1IND5JkeXWaD9nPOlseekIvbHEJEUmIgMpSRAREckzw9jcun9UbTfvPgAU57frU+VzipQCJQkiIiJ5FgwYneHRdSPq6IkSDBTnzfNU+ZwipUBJgoiISJ7FE05DdWhUbRtryoknfIIjmhhT5XOKlAIlCSIiInnmOOtXzh9V2/UrmoHiuXnu7Ily9GQfUNqfU6TUKEkQERHJs+ryILevWUJF8Mz/LVcEy7htzRKqiqCwWjLpPLW3g/t2tPPQswdJJL0kP6dIqVKSICIiUgBqK0Ns3LB62BvoimAZGzesprZydN118q27N87jrx0jnnSOdPexq70TKL3PKVKqlCSIiIgUgKpQgBUtDWy7ay23XreYxppyINU3/9brFrPtrrVFVUitvjrE1UubAJhZW8Gipmqg9D6nSKkyd/X3m2xmtmvlypUrd+3ale9QRESkAIWjcQwjGLD04F0fd9ebgcdyUt1+ci0aT1I+4OlAMuk8/2YX58+tG7IoWi4/p4gMtmrVKlpbW1vdfdVY9x33b6KZLXX318a7v4iIiAwt8yZ+vF+oR2IJuiMx7t7axubW/XSGYzRUh1i/cj63r1lCbWUoJ9/WR+NJHnvtKK8ePsnHr26hInj6mGVlxkXN9cPum4vPKSIT42y6Gz1qZitzFomIiIjkRCSWoLW9k+u/+Aj3bt9zqjZBZzjGvdv3cP0XHmF3eyeRs6xo7O5sbt3P7teP090bZ/srR3MRvogUgLNJEmqAR8zs7bkKRkRERM5ed2+MT27aSV88OeT2vniSWzbtpLt3dIXNhmNmrFjYcOp9V2+MRHL03ZjD0TiRaIJYIkkkmiAcjZ9VPCKSO2fT8e9G4EfAD83sk+7+7dyEJCIiIuMVjsa5e0vbsAlCv754knu2tHHnumVnNQ5g2exp7D1Wx/yGKi6YW4fZyFWSJ6srlIiM37ifJLj7LuBaYD/wTTO7M2dRiYiIyLgYxubW/aNqu3n3AWDkm3qAnr44Dz17kK4BTx/MjF+6cA4XzqsfdYIwGV2hROTsnNUUqO7+KnA18DTwRTP7u5xEJSIiIuMSDNipG++RdPRECQZGvrF/7chJvvl4Oy+82cXDLxzmbGZGnKyuUCJyds66ToK7HwZuAB4Bft/Mvm1mmr9MREQkD+IJp6F6dIXIGmvK01OPnlllKEBfPPXN/p6jPbx5ondcsY21K1REYxRE8iYnxdTc/STwTmAzcDPwmpn9m5n9kZm9xcyGn/9MREREcsZx1q+cP6q261c0AyMnCc3Tq7h0wXTqqkKsX9nMvOlV44ptorpCiUju5eQbfzNrBH4PWEvqN3pB+vXBjDZtwE53/0guzikiIiKDVZcHuX3NEu7b0X7Gb+wrgmXctmbJoEHLHT1Rku7MmFaRtf7apTO4dumMQQXTxmIiukKJyMQ4qycJZjbPzP430A58Nr36L4DlwHrgfwI/AY4BS4EPn835REREClGhTeVZWxli44bVVAxzQ18RLGPjhtXUVp7ulpRMOjv3dvDtHe089OzBQVOZlgfLzipBgInpCiUiE+NsKi7fA3wcqAA6gS8CX3b37nSTV4DvZbRfCIy5JLSIiEihKtSpPKtCAVa0NLDtrrXcs6WNzbsP0NETpbGmnPUrmrltiNi6e+PseO0Y8aRzpLuPXe2dXLG4Madx9XeFunf7nhHbjrYrlIhMDBvvDAVmliSVHHwJ+EpGciAjMLNdK1euXLlr1658hyIiIuPUP5XncDP19H9bv6KlIa9z/oejcQwjGLD0N/M+bF2EXe0dbH35KLPqKnj7BbOZVVuZ83gOd/dy/RceGbEr1La71k7I+UWmklWrVtHa2trq7mP+ov5snhv+ObDI3T+vBEFERKaaYpnKs7o8SFV5gFCgjKrywKkEoX+2okwrFjTw9gtm86urF07YDfp4ukKJyOQ7m2JqSg5ERGRKKuapPKPxJI+8dJhvPd5O74CCZWVlxkXN9ZSVTdyA4cyuULdet5jGmnIgNQbh1usWs+2utXl/+iIiOZrdSEREZCoZ61Sed65bPsERjY67893W/RxM1zl49NWjvPX82ZMeR1UoQFUowB3rlnHnuuWj6golIpMrJ3USREREppJincrTzFjV0nDqfXdvfNAsRpNpuK5QIpJ/+m0UEREZo/6pPEeTKPRP5VkovWfOnTWNi5rrmd9QxXlzajErjARGRAqLniSIiIiM0URUNc61nr44Dz37Jl0DBk6bGW+/YDbnz61TgiAiw1KSICIiMkb9VY2Hm6Gn33BVjSfaq4dP8s3H23nhzW4efuEw453uXESmLiUJIiIi41DIU3lWlwdOTXG652gPb6YHKktpKLQK31KaNCZBRERkHMZT1XiyzJtexaULprPnSA9vO38286ZXTXoMknuFWuFbStO4Ky7L+KnisohIaRlLVeNc6+iJkkg6M2srstZH0zUcykfoEiXFoVgqfEthyVfF5Sxm9mvpV+0Q2+r6t+fqfCIiIoUiH1N5JpLOk3s6uG9HOz9+7uCgqUzLg2VKEEpIsVT4ltKRy389NgEbgblDbJubsV1ERETO0sneOE/uOUYi6Rzp7uOpvR35DkkmSDFX+Jbilcsk4Zvp14khtp3I2C4iIiJnqb46xNVLmwCYXVfJkpnT8hyRTJSxVvgGTW0rZy9nz0PdfcMZth0Eht0uIiIiZ9YXT1ARzO5rvmJBA5WhAOfPqaOsTDeGpapYK3xLcVNnRRERkbM0kVNS9sUTPPziIb71eDu9sUTWtrIy48J59UoQSlx/he/R6K/wLXK2JnRklZnNAK4HwsDP3D0xwi4iIiJFY6KnpHR3Nrce4GC6zsH2V47ytgtm5yp8KRL9Fb7v3b5nxLb5qvAtpScnTxLM7NNm9oSZNWasWwW8ADwA/Ah4zMxqcnE+ERGRfOufkvL6Lz7Cvdv3nOoO0hmOce/2PVz/hUfY3d5JJDb+78fMjFUtDafe90TjJJO6AZxqCr3Ct5SmXHU3+jDg7p45tcLfAg2kZjT6EbAa+I0cnU9ERCSvJmtKynNnTeOi5nreefEc3nvpPHUtmqIKucK3lKZcJQnnAs/0v0l3M1oD3Ovut7r7e4CdwEdydD4REZG8mYgpKU/2xfmP/3qTE5HspMLMePsFszlvTh1mShCmqswK37det5jGmnIgNQbh1usWs+2utSqkJjmVq+dRTcDhjPfXppcPZqzbhmY4EhGREjDWKSnvXLf8jG1ePdzNT54/RF8sSW88wfsva1ZCIINUhQJUhQLcsW4Zd65bnpcK3zJ15OqK6gBmZLxfAySBxzLWOVCZo/OJiIjkTa6npKwuDxJNP5XYezTMmyd6mTe96qzjlNJUnZEQ6MGBTJRcdTd6AXiPmTWZ2XRSYxR2untXRptFwMEcnU9ERCRvcj0l5bzpVVy2YDrTq0PctGq+EgQRybtcJQlfAeYC+4F9wBzg//RvNLMAcB3wdI7OJyIikjf9U1KOxsApKY+d7ONId9+gdteeM4OPXdXCgsbqXIUpIjJuOUkS3P37pGYueg54CfgDd78vo8nbSHU1+nEuziciIpJP45mSMpF0drQd49tPvM5Dzx0kMWAq01CgjFBANU5FpDDk7F8jd7/H3S9Pv740YNuP3b3B3e/J1flERETyaaxTUp7sjfPU3g4SSedodx9P7e0Ycj8RkUKgryxERETGYaxTUtZXh7h6aWqOjzn1lSydNS1vsYuIjCTn82WlqyovA6a5+7ZcH19ERKRQnGlKSjOjcsDUMysWTKcqFOC8ObUqiiYiBS1nTxLMbL6ZfRfoBJ4CHsnYdp2ZPW9mN+bqfCIiIoWiujxIVXmAUKCMsjJ47LVj3Lejnd5YIqtdWZlxwbw6JQgiUvBykiSY2VzgCeB9wA+Bx4HMfwGfAGaRmhpVRESkJLk73911gGf2n6C7N872V47mOyQRkXHJ1ZOEvyCVBLzN3dcDP83c6O4xUhWXrx1iXxERkZJgZqxe1HDqfTiWIJk8c40EEZFClKsxCe8Cvu/uPz9Dm9eB63N0PhERkYJ07uxaLpkfZkFjNefOmoaZuhaJSPHJ1ZOE2cArI7SJATU5Op+IiEhedffG+NF/vcmJSGzQtreeP5tls2uVIIhI0crVk4QOYMEIbZYBB3N0PhERkbx55VA3P3n+ENF4kr54gvdf1qyEQERKSq6eJDwKvNfM5gy10czOBd5BxoxHIiIixWpaZZBYIgnA3qNhDnb15jkiEZHcylWS8LdAJbDFzN4JVEOqZkL6/Q+AJPB3OTqfiIhI3sytr+KyBdNpqA7xocvnM7e+Kt8hiYjkVE66G7n7E2Z2G/CPpKZA7deVXsaBT7r7c7k4n4iIyGQ5erKPpDuzaiuz1l97zgyuPWcGoUDOSg6JiBSMnFVcdveNZrYd+E3gKqAJOAHsAL7m7i/l6lwiIiITLZF0ntzTwc69HTTUlPORKxYSyCiCpuRAREpZzpIEAHd/Bfj9XB5TREQkH072xdnV3kEi6Rzt7mPn3g6uWtKU77BERCaFvgYREREZQn1ViGvOmQHAvOmVnDtrWp4jEhGZPDl5kmBmbaNs6u6+NBfnFBERyaXeWILKUCBr3WXzp1NdHmDZrFrKyjTFqYhMHbl6klAG2BCv6cCi9Ks8h+cTERHJid5Ygp89f4hvPd5ObyyRta2szDhvTp0SBBGZcnI1u9Gi4baZ2TnAV0lVW/6lXJxPREQkF9ydza0HOJSuc7DtlaO8/YLZeY5KRCT/JvybfXd/FVgPNAN/MdHnExERGS0zY/WihlPve2MJkknPY0QiIoUhp7MbDcfde83sp8CvAn8yGecUEREZjXNn13LJ/DALG6s5Z9Y0zNS1SERkMscIxIE5k3g+ERGRU7p6Y/zwmTc4EYkN2vbW82dz7uxaJQgiImmTkiSY2QzgA8C+yTjfGeK43sy+a2ZvmllfevkTM3vXEG2vMbMfmVmHmYXN7Bkz+4yZBYY6toiIFK6XD3XzrcfbeeXQSf7zhUO4q0uRiMiZ5GoK1D8/w/EXAO8D6sljVyMz+zPgL4GjwA+BN4EZwArgRuBHGW3fB3wX6AW+A3QA7wG+BFwLfGgSQxcRkbNUWxkklkgC8HpHmINdvcytr8pzVCIihStXYxI+N8L2LuDz7v7FHJ1vTMzsQ6QShJ8B6929e8D2UMaf64BvAAngRnd/Kr3+s8DDwE1mdrO73z9Z8YuIyNmZW1/FioUN7D3aw9sumK0EQURkBLlKEtYOsz4JdAIvuns8R+caEzMrA74AhIGPDEwQANw9s4PqTcBM4Jv9CUK6TW/6acR/Ap8GlCSIiBSgI919OM6s2sqs9dcsbeLapU0EAyrZIyIyklzVSdiSi+NMkGuAxcADQKeZ/TJwEamuRE+6++MD2r8lvXxoiGNtJZVsXGNmFe7eN0Exi4jIGMUTSZ7c28HOPZ001oT4yJUtBDKKoIWUHIiIjNqkTIGaZ6vTy0NAK3Bx5kYz2wrc5O5H0quWp5cvDzyQu8fNbA9wIbAEeOFMJzazXcNsOm90oYuIyGj1RBO0tneSdOfoySg793Zw1ZKmfIclIlKUpsLXKrPSy98AqoC3AbWknib8GLgB+PeM9vXp5Ylhjte/fnpOoxQRkbNSXxXimnNmANA8vYpls2vzHJGISPEa15MEM/vncZ7P3f3Xx7nvePVPWWqknhg8nX7/nJl9gNQTgzVmdvUQXY+G0v/sesT589x91ZAHSD1hWDmKc4mIyDB6YwkqQ9mzUl82fzo15UGWzVZRNBGRszHe7kYbxrmfA5OdJHSml20ZCUIqGPeImf04HdMVwOOcflJQz9Dq0svhnjSIiMgE6o0l2PryEdqPhfn41S1ZiUJZmbF8jp4giIicrfEmCYtzGsXEeim9PD7M9v4kon8+vJeAy4FlQNaYAjMLkvrscaAtp1GKiMiI3J3vtu7ncFdq3oitLx9h3YVz8hyViEjpGVeS4O7tuQ5kAm0ldVN/rpmVu3t0wPaL0su96eXDwEeBdwD/OqDtDUA1sFUzG4mITD4z48rFjfzg6TcBiCWcZNIpK1PXIhGRXCr5gcvufpRU1eR6IKsytJm9HfglUl2H+qc8fYBUVeabzezyjLaVwOfTb78+wWGLiMgwzplVy6UL6nnPpXP55UvmFkSCEI7GiUQTxBJJItEE4WheSgOJiORMTqdANbO5wFuBZqBiiCbu7n+Zy3OO0h3AlcCfmtkNwJNAC/ABUpWVP+Xux9MBdpnZp0glCz83s/uBDuC9pKZHfYBU0iEiIhOoqzfGlpeOcMO5M6mvDmVte8t5s/MUVbZILEF3JMbdW9vY3LqfznCMhuoQ61fO5/Y1S6itDFE1YHC1iEgxyFmSYGb/HfjjAcc0Ts8C1P/nSU8S3P2wmV0J/BmpxOAqoBv4f8Bfu/uOAe2/Z2ZrgD8FPghUAq+SSja+6u4jzmwkIiLj9/Khbn76/CGi8STReJL1K5sLbraiSCxVl+GTm3bSF0+eWt8ZjnHv9j3ct6OdjRtWs6KlQYmCiBSdnHQ3MrOPAp8FtgE3kUoI/gX4CPANIAncz+lqxpPO3Tvc/Q53X+zu5e7e5O7vG5ggZLR/1N3f5e4N7l7l7he7+5fcPTHZsYuITDV1lSFiidSN977OMAe7evMc0WDdvbFBCUKmvniSWzbtpLs3NsmRiYicvVyNSfg0sB94h7s/mF63193vd/ffAN4N/Aqnpw8VEREZ1pz6SlYsbKBpWjm/cvkC5tZXjbzTJApH49y9pW3YBKFfXzzJPVvaiGiMgogUmVwlCRcDP3L3zH8FTz1bdfcfk6pu/Ic5Op+IiJSIw129HB7iScE1S5v4yBULmTe9sBIEAMPY3Lp/VG037z7A6TqcIiLFIVdJQgg4lvE+wuBiZM8Cl+bofCIiUuTiiSSPvnqUf31yHz9+7iCJZPZwr1CgjGCgMCfhCwaMzvDouhF19EQJBpQkiEhxydW/vm8CczPevw5cMqBNM6l6BSIiIvREE/xi33GS7hw9GWXn3o58hzRq8YTTMGDGpeE01pQTT2i+CxEpLrlKEnaT6nLU72HgejP7uJnVmNkvk5olaHeOziciIkWuvirENUubAGhuqGL57No8RzR6jrN+5fxRtV2/opnTE/2JiBSHXCUJPwQuNLPF6fd/Q6pA2SagC/g+qQ6Zf5aj84mISJGJRAdPDnfp/On88iVz+dCq+TTUlOchqvGpLg9y+5olVATP/N9oRbCM29Ysoao8p2WJREQmXE6SBHff5O7V7r4n/X4fsJpUZeKfAPcAq4ebblREREpXbyzBj587yLd27KU3lp0olJUZy2bXFlwNhNGorQyxccPqYROFimAZGzesprZydN2SREQKyYR9tZFOGH57oo4vIiKFz935but+Dnf1AbD15SOsu3BOnqPKjapQgBUtDWy7ay33bGlj8+4DdPREaawpZ/2KZm5TxWURKWI5SRLMbLq7H8/FsUREpHSYGVcubuIHT78BQDzpJJNOWVnxPTkYSlUoQFUowB3rlnHnuuUEA5YepOzqYiQiRS1X/4K9aWbfJ1Vl+SF3P3N1GRERmTLOmTWNyxZOZ0FDNefMmpbvcCZEdUZCoAcHIlIKcjVweS/wIeAHwAEz+1szu/jMu4iISCk5EYnx/aff4MQQ9QPWLp9VsgmCiEgpytXA5fOBK4F/JFVY7U7gF2a2y8x+18xm5OI8IiJSmF462M19O9p57fBJfvbCIdw15aeISDHLWSlLd9/p7r9Fqqjah4D/R6p2wpdJPV34npm9P1fnExGRwlFfFSKWSPU03dcZ5mBXb54jEhGRs5HzevfuHnP377r7e4F5wB3As8B7gQdyfT4REcm/OfWVrFzYQNO0cj68egFz66vyHZKIiJyFiZ564RjwHPACcNEknE9ERCbY4fRTgll1lVnrr1naxDVLmwgGcv79k4iITLIJuWk3s/OATwAfI/U0wYBXSc1+JCIiRSiWSPJEWwe72jtpqAnxkSsWZiUESg5EREpHzpIEM2sAfpVUcnA5qcSgC7gX2OTuj+XqXCIikhKOxjHs1Pz8jmdNx5nbcyV4ev9xku4cOxll595Orl7aNCHnEhGR/MpVMbUHgHeTmtnIgZ8Bm4AH3V2j10REciwSS9AdiXH31jY2t+6nMxyjoTrE+pXzuX2CKv3WV4W4ZmkTP3/pCPMbqjh/bm1Ojy8iIoUjV183rQdeItWd6FvufiBHxxURkQEisQSt7Z18ctNO+uKna1d2hmPcu30P9+1oZ+OG1axoaTirRCESTVBVnr3/ZQumM60iyDmzpmFWGlWTRURksFx1IL3G3c93979RgiAiMrG6e2ODEoRMffEkt2zaSXfv4KJmoxGJJnjo2YN8a8deemOJrG1mxrmza5UgiIiUuFwVU9uRi+OIiMiZhaNx7t7SNmyC0K8vnuSeLW1EovExHd/d2bx7Py+82UVPX4ItLx85m3BFRKRIaSoKEZEiYhibW/ePqu3m3QdIzSExhuObceXi04ORk0knmVT1ZBGRqUZ1C0REikgwYHSGR9eNqKMnSjAw9m5B58yaxmULp9PSWM2SmdPGvL+IiBQ/PUkQESki8YTTUB0aVdvGmnLiieGfApwIx/j/fnGAE0MkHWuXz1KCICIyhSlJEBEpIo6zfuX8UbVdv6KZ1KzUg714sItv7dhL25EefvrCIdzVpUhERE5TkiAiUkSqy4PcvmYJFcEz//NdESzjtjVLqBqmsNr0qnLi6bEG+zvDHOrqy3msIiJSvJQkiIgUmdrKEBs3rB42UagIlrFxw2pqK4fvljSnvpJVLQ3MqK3g5tULmVNfOVHhiohIEdLAZRGRIlMVCrCipYFtd63lni1tbN59gI6eKI015axf0cxtAyouHzzRixnMrstOBK5e0sQ1S2cQKFPNAxERyTauJMHM/nmc53N3//Vx7isiImlVoQBVoQB3rFvGneuWEwxYepCyn+piFEskefy1Y7S+3kljTTkfuWIhwcDppw+ZfxYREck03icJG8a5nwNKEkREcqQ6Y8xB+sHBKeFogv86cAJ3OHYyys69nVy9tAkREZGRjDdJWJzTKEREJOfqq0Jcs7SJn790hIWN1Vwwty7fIYmISJEYV5Lg7u25DkRERM5OOBrPerIAcNmC6dRWBlk6cxpmGnsgIiKjow6pIiJFLhyN8x//9Sb37WinN5bI2mZmnDOrVgmCiIiMSU5nNzKzucBbgWagYogm7u5/mctziohMZe7O5tYDHOlO1TnY8vIRfunCOXmOSkREil3OkgQz++/AHw84pnG63Gf/n5UkiIjkiJlx9dImvv+LN4BU0pBMOmWa1lRERM5CTrobmdlHgc8C24CbSCUE/wJ8BPgGkATuB96Si/OJiMhpS2dOY2VLA+9f0cw7LpqrBEFERM5arsYkfBrYD7zD3R9Mr9vr7ve7+28A7wZ+BdDUGiIi43Q8HOV7uw9wPBwdtG3NspksnlGTh6hERKQU5SpJuBj4kbvHM9admrHb3X8M/Bj4wxydT0RkSnnhzS7u29HOnqM9/PT5Q7j7yDuJiIiMU66ShBBwLON9BKgf0OZZ4NIcnU9EZEpprCknnkwlBm8c7+VQV1+eIxIRkVKWq4HLbwJzM96/DlwyoE0zEEdERMZsdl0lq1oaaD8W5u0XzGZ2XWW+QxIRkRKWqycJu0l1Oer3MHC9mX3czGrM7JeBD6bbiYjIGRw80cuhrt5B669e0sSvXrFQCYKIiEy4XCUJPwQuNLPF6fd/A5wANgFdwPdJzXj0Zzk6n4hIyYnGk2x5+Qj373ydHz93kHgimbU9GCgjoJmLRERkEuQkSXD3Te5e7e570u/3AauBrwM/Ae4BVrv7jlycT0SkFPXGEzx74ATucOxklCf3duQ7JBERmaJyWnE5Uzph+O2JOr6ISKmpqwxx7TkzeOTFw7Q0VXPhvIHzP4iIiEyOCUsSRETkzHr64tRUZP8zfOn8emorgyyZUYOZuhaJiEh+5GpMwinpgcorzOz6XB9bRKQUhKNxfvRfb3LfjnYi0UTWNjNj6cxpShBERCSvcpYkmNl8M/su0Ak8BTySse06M3vezG7M1flERIqRu7O59QAvHewmHE2w5eUj+Q5JRERkkJwkCWY2F3gCeB+pmY4eJzWbUb8ngFnAh3NxPhGRYmVmXL20KeM9JJOqniwiIoUlV2MS/oJUEvA2d/+5mf0FcHX/RnePmdk24NocnU9EpGgtnTmNVS0NLGysZtGMmnyHIyIiMkiuuhu9C/i+u//8DG1eB+bl6HwiIgWvsyfKg7v3czwcHbTthmUzlSCIiEjBylWSMBt4ZYQ2MUD/I4rIlPD8G13ct6OdvUfD/PT5Q7irS5GIiBSPXCUJHcCCEdosAw7m6HwiIgVtxrRy+ocavHG8l0NdffkNSEREZAxylSQ8CrzXzOYMtdHMzgXeQcaMRyIipWxWXSWrWhqYVVfBr165gDn1lfkOSUREZNRylST8LVAJbDGzdwLVcKpmwjuBHwBJ4O9ydD4RkYLxxvEIB0/0Dlp/1ZJGbl69kFm1ShBERKS45GR2I3d/wsxuA/6R1BSo/brSyzjwSXd/Lhfnk+ITjsYxjGDAiCccx6kuV8FvKW7ReJLHXjvKL/Ydp6G6nI9euZBg4PR3L5l/FhERKSY5u0tz941mth34TeAqoAk4AewAvubuL+XqXFI8IrEE3ZEYd29tY3PrfjrDMRqqQ6xfOZ/b1yyhtjJEVSiQ7zBFxqU3nuC5N7pwh46eKE/u7eCapTPyHZaIiMhZy+lXue7+CvD7w203s5nurvKiU0QklqC1vZNPbtpJXzx5an1nOMa92/dw3452Nm5YzYqWBiUKUpTqKkNcd84MHn7xMItmVHPhvPp8hyQiIpITk/Is3Mzqzex/Aq9NxvmkMHT3xgYlCJn64klu2bST7t7YJEcmMj4n++KD1l0yv573XTaP91/WTH1VKA9RiYiI5N5ZJwlm1mJm683sPWY2e8C2SjP7E6AN+ONcnE+KQzga5+4tbcMmCP364knu2dJGJDr45kukUPT0xfnhM2/w7R3tRKKJrG1mxpKZ0zCzPEUnIiKSe2d1025mXyX1dODfge8Be83sN9PbbgReAj4PVAFfAZaczfmkeBjG5tb9o2q7efcBQDdYUpjcnc27D/DKoZOEowm2vKwekyIiUvrGnSSY2SeA306/fQF4EQgBX01vewiYB9wNnOPuv+/uh88yXikSwYDRGR5dN6KOnijBgJIEKUxmxrVLm069LzNIJlU9WUREStvZDFzeAESBte7+OICZ3QD8FLgX2A+8x93/62yDlOITTzgN1aFRJQqNNeXEE47GLkuhWjJzGpcvaqClsYaFTdX5DkdERGTCnU13o0uAB/sTBAB330qq25GRqougBGGKcpz1K+ePqu36Fc2AvpmV/Ovoiaam6u2JDtp2/bkzlSCIiMiUcTZJQj3w6hDrX0kvHx9im0wR1eVBbl+zhIrgmS+ximAZt61ZQpUKq0mePf9GF9/e0U77sTA/e+EQ7kpcRURk6jqbJKEMGKovSQzA3SNncWwpAbWVITZuWD1solARLGPjhtXUVmraSMm/GdPK6R9q8MbxXg519eU3IBERkTw6269v9VWbDKsqFGBFSwPb7lrLPVva2Lz7AB09URprylm/opnbVHFZCsisukpWtTTwekeYt10wi1m1lfkOSUREJG9svI/UzSzJ2JMEd/cp36/EzHatXLly5a5du/IdyqQJR+MYRjBgxBMOuLoYSd4cOB4hYMac+uxEIJ5IUmZGWZlm2xIRkeK3atUqWltbW9191Vj3Pdu7tLH+T6r/eaeo6oyEQA8OJF/64gkee/UYT+8/TkN1OR+9ciHBwOnucJl/FhERmcrG/T+iu5eN55XL4EVExqIvnuT5N7twT81k9OTejnyHJCIiUpB00y4iU0ZdZYjrz50BwOIZNVzUXJ/niERERAqTOoWLSMk62RdnWkX2P3MXN9dTWxliUVM1ZuoBKSIiMhQ9SRCRknOyL84Pnn6Db+9oJxJNZG0zMxbPqFGCICIicgZKEkSkpLg7D+4+wKuHTxKOJtjy8uF8hyQiIlJ0lCSISEkxM65d2nTqfbCsjGRSJV1ERETGQmMSZFIMrJPgeNa0qCK5tGTmNFYvaqSlqZoFjdX5DkdERKTo6C5NJlQklqA7EuPurW1sbt1PZzhGQ3WI9Svnc7sqLstZOnayj0deOsJbz5tFQ0151rbr0rMYiYiIyNipu5FMmEgsQWt7J9d/8RHu3b6HznAMgM5wjHu37+H6LzzC7vZOIrHECEcSGey5N07w7SdeZ19HmJ+9cIjxVo8XERGRwZQkyITp7o3xyU076Ysnh9zeF09yy6addPfGJjkyKQUzp1XQnxe8eaKXw919+Q1IRESkhChJkAkRjsa5e0vbsAlCv754knu2tBGJxicpMikVs+oquXxRA3PqK/nIlQuZXVeZ75BERERKhpIEmRCGsbl1/6jabt59ANCc9TK8/Z1h3jwRGbT+qiVNfPjyBcyYVpGHqEREREqXBi7LhAgG7NQYhJF09EQJBpQkyGB98QSPvnqUp/edoKE6xMeuaiEYOP3dRqBM142IiMhEmJJPEszs42bm6detw7S5xsx+ZGYdZhY2s2fM7DNmpql4RiGecBqqQ6Nq21hTTjyhQacyWF88yQtvdgOpAe9P7u3Ic0QiIiJTw5RLEsxsAfD3wMkztHkfsBW4AXgQ+AegHPgScP8khFn0HGf9yvmjart+RTOgJEEGq6sMcX16KtMlM2u4uLk+zxGJiIhMDVMqSTAzAzYCx4B/HKZNHfANIAHc6O6/7u5/CFwGPA7cZGY3T07Exau6PMjta5ZQETzzJVYRLOO2NUuoUmG1Kc/dh5zp6uLmej6wopn3XjqP2srRPZ0SERGRszOlkgTgd4G3ALcAPcO0uQmYCdzv7k/1r3T3XuDP0m8/PZFBlorayhAbN6weNlGoCJaxccNq3fgJJ/vi/OCZN/n2E68THjDTlZmxaEYNqRxfREREJsOUSRLM7Hzgb4CvuPvWMzR9S3r50BDbtgJh4Boz03QqI6gKBVjR0sC2u9Zy63WLaUxXxG2sKefW6xaz7a61rGhpUMXlKc7deXD3AV47fJJINMGWl47kOyQREZEpb0r08TCzIPAt4HXgv43QfHl6+fLADe4eN7M9wIXAEuCFEc67a5hN540QQ8moCgWoCgW4Y90y7ly3nGDA0oOUXV2MBEg9KbjunBl8b/cBAMqDZSSTTplmLhIREcmbqXKX9ufACuA6dx882Xq2/pGRJ4bZ3r9+eg7imjKqMxICPTiQgRbPqOGKxY0sbKxmQWN1vsMRERGZ8ko+STCzK0g9Pfg7d388F4dML0ecjsfdVw0T0y5gZQ5iESkqR0/28ciLh3nr+bNPdT/rd+05M/IUlYiIiAxU0mMSMroZvQx8dpS79T8pGG6uxboB7URkFJ49cIL/+8Tr7O+M8LMXDuGuaW9FREQKVUknCcA0YBlwPtCbUUDNgb9It/lGet2X0+9fSi+XDTxYOulYDMSBtgmNXKTEzKqroD8vOHiil8PdffkNSERERIZV6t2N+oB7h9m2ktQ4he2kEoP+rkgPAx8F3gH864B9bgCqga3urjsckTGYVVvJ5Ysa2NcR5m0XzGbGNE0QJiIiUqhKOklID1K+dahtZvY5UknCv7j7P2VsegD4AnCzmf19f60EM6sEPp9u8/UJC1qkBOzrCBMMGHPrq7LWX7WkiauXNGnmIhERkQJX0knCeLh7l5l9ilSy8HMzux/oAN5LanrUB4Dv5DFEkYLVG0uw/ZWj/NeBEzRUh/joVS2EAqd7NQaUHIiIiBSFUh+TMC7u/j1gDaniaR8EfgeIAXcAN7tGXIoMKZZI8tKhbgA6wzF27unIc0QiIiIyHlP2SYK7fw743Bm2Pwq8a7LiESkFtZUhbjh3Jj974RBLZ03jkgXT8x2SiIiIjMOUTRJE5Oy4O919ceoqQ1nrL2quo74qxILGKszUvUhERKQYqbuRiIxZd2+M7z/9Bv/3idcJR+NZ28yMhU3VShBERESKmJIEERkTd+d7uw/QdqSHSDTBlpeO5DskERERyTElCSIyJmbGdefOPPW+IlRGMqmx/CIiIqVEYxJEZMwWz6jhysWNLGyqZn5Ddb7DERERkRzTkwQRGdaR7j7+7al9dPREB2275pwZShBERERKlJIEERnSswdO8H+feJ0DnRF+9vwhVB5ERERk6lCSICJDmlVXcerPB7t6Odzdl8doREREZDJpTIKIDGlWbSWrFzWwrzPM2y+YQ2NNeb5DEhERkUmiJEFE2NcRJlBmzJtelbX+yiVNXG1NqnkgIiIyxShJEJnCemMJtr1ylGcPnKChOsRHr2ohFDjdCzFQpuRARERkKtKYBJEpJByNE4kmiCWSRKIJuiIxXj7UDUBnOMbOPR15jlBEREQKgZ4kiEwBkViC7kiMu7e2sbl1P53hGA3VIdavnM8Ny2bw5J4OzptTx6ULpuc7VBERESkAShJESlwklqC1vZNbNj5JNHF6GtPOcIx7t+/hW4/v5Ys3XcLbLphNVSiQx0hFRESkUKi7kUiJ6+6NDUoQMkUTzl3f/S+6e2OTHJmIiIgUKiUJIiUsHI3zjz9/bdgEoV9fPMk9W9qIROOTFJmIiIgUMiUJIiXMMB7cfWBUbTfvPgBoNiMRERFRkiBS0oIBozM8um5EHT1RggElCSIiIqIkQaSkHO7u5d927qOjJwpAPOE0VIdGtW9jTTnxEboliYiIyNSgJEGkRDx74AT/+sQ+DhyP8LPnD+HuOM76lfNHtf/6Fc2AkgQRERFRkiBSMmbXVZ7686GuXo5091FdHuT2NUuoCJ75V70iWMZta5ZQVa5ZkUVERERJgkjJmFlbwerFDTRPr+KjV7UwK5001FaG2Lhh9bCJQkWwjI0bVlNbObpuSSIiIlL69LWhSBFqP9ZDMFBG8/SqrPVXLm7i6iVgdnoAclUowIqWBrbdtZZ7trSxefcBOnqiNNaUs35FM7etWUJtZUiF1EREROQUJQkiRaQ3lmDry0d47o0upleH+NhVLYQCp58QBMqGnp2oKhSgKhTgjnXLuHPdcoIBSw9SdnUxEhERkUHU3UikiMSTzqtHTgJwPBxj556OMe1fXR6kqjxAKFBGVXlACcIohaNxItEEsUSSSDRBWEXnRESkxOkOQaSITKsIcsO5M/np84dYNruWSxdMz3dIJS0SS9AdiXH31jY2t+6nMxyjoTrE+pXzuV3dtEREpIQpSRApUO5OVyRO/YA6BxfOq6O+KsSCxuo8RTY1RGIJWts7+eSmnfTFk6fWd4Zj3Lt9D/ftaGfjhtWsaGlQoiAiIiVH3Y1ECtCJSIzv/eIA/7rz9UFdW8xMCcIk6O6NDUoQMvXFk9yyaSfdvaOraC0iIlJMlCSIFBh35/u/OMDeo2Ei0QQ/f+lIvkOacsLROHdvaRs2QejXF09yz5Y2IhqjICIiJUZJgkiBMTOuP3dm+s9QXR4gmVQl5MlkGJtb94+q7ebdB4ChZ5USEREpVhqTIJJn7p5V1wBg0YwarlrSxKIZ1cytrxpmT5kowYDRGR5dN6KOnijBgJIEEREpLXqSIJJHh7t6+c7OfXT0RAdtu3ppkxKEPIknnIbq0VWgbqwpT9ecEBERKR1KEkTy5L/2n+Bfn9zHmyd6+enzB9WlqIA4zvqV80fVdv2KZkB/dyIiUlqUJIjkyZz6ylN/PtzVx9GTfXmMRjJVlwe5fc0SKoJn/ieyIljGbWuWqCidiIiUHCUJInkys7aC1YsbmN9QxceuamFWXeXIO8mkqa0MsXHD6mEThYpgGRs3rKa2cnTdkkRERIqJvv4SmQR7j/YQCpbRPD17jMFVi5uwJQwauCz5VxUKsKKlgW13reWeLW1s3n2Ajp4ojTXlrF/RzG2quCwiIiVMSYLIBOqNpeocvPBmF9OrQ3zsqhZCgdPfTJeVKTkoZFWhAFWhAHesW8ad65YTDFh6kLKri5GIiJQ0dTcSmUDxpNN29CQAx8Mxdu7pyHNEMh7V5UGqygOEAmVUlQeUIIiISMlTkiAygaZVBLkhXRht+ZxaLls4Pb8BiYiIiIyCvg4TyRF350QkxvTq8qz1F86rY3p1iPkN1XmKTApNOBrHsFPdlxynWk8nRESkgOh/JZEcOBGO8bMXDnG4u49fu7qFmorTv1pmpgRBAIjEEnRHYty9tY3NrfvpDMdoqA6xfuV8btdAaBERKSDqbiRyltyd7z99gNc7wqcGKosMFIklaG3v5PovPsK92/fQGY4B0BmOce/2PVz/hUfY3d5JJJbIc6QiIiJKEkTOmplxw7KZ6T/DtMqgqifLIN29MT65aSd98eSQ2/viSW7ZtJPu3tgkRyYiIjKYkgSRMXIfnAC0NNVw9dImPrx6AWuWzczZ1KbhaJxINEEskSQSTRCOxnNyXJlc4Wicu7e0DZsg9OuLJ7lnSxsR/T2LiEieaUyCyBgc6url4RcPs+6C2TRNq8jadtWSppydR33XS4thbG7dP6q2m3cf4M51yyc4IhERkTPTkwSRUXpm/3H+9cnXOXiil5+9cGjCuhSp73rpCQbs1N/jSDp6ogQDKrInIiL5pSRBZJTmTa+izFI3b0e6+zh6sm9CzqO+66UnnnAaqkOjattYU56u6iwiIpI/ShJERmnGtApWL2pkQWM1H7uqhVl1lTk/h/qulybHWb9y/qjarl/RDChJEBGR/FKSIDKEPUd72N8ZHrT+ysWNfHBl86CCabky1r7roG4pxaC6PMjta5ZQETzzP7kVwTJuW7OEKhVWExGRPFOSIJIhEk3w0LNv8r3dB/jp84eIJbK/0S8rM8wm7sZcfddLV21liI0bVg+bKFQEy9i4YTW1laPrliQiIjKRlCSIZEi403a0B4Dj4Rg793RM6vnVd710VYUCrGhpYNtda7n1usU01qSeRjXWlHPrdYvZdtdaVrQ0aNYqEREpCHqmLZJhWkWQG86dyU+fP8T5c2tZsbBhUs/f33f93u17RmyrvuvFpyoUoCoU4I51y7hz3XKCAUsneq4uRiIiUlD0v5JMWe7OiUhs0PiCC+fV0VBTTvP0qkmPqb/v+n072s84eFl914tbdcbfmx4ciIhIIVJ3I5mSjoejfLf1AP/65D56+rJnCDKzvCQI/dR3XURERPJNSYJMOe7OD55+g30dYXpjCX7+0pF8h5RFfddFREQk39RXQaYcM+OGZTPZ3HoAM6irCpJMOmVlhTNTkPqui4iISD7pbkNKnrsPmra0pamGa5Y2sWhGDbMnoCharqjvuoiIiOSDuhtJSTt4opd/fXIfx072Ddp25ZKmgk4QRERERPJFSYKUrKf3Hef+na9zqKuXnz5/iGRS04WKiIiIjIaSBClZzQ1VlKW7GR092cfRIZ4miIiIiMhgGpMgJWvGtApWL2rkjeMR3nb+bOpHWclYREREZKpTkiAloe3IScqDZcxvqM5af+XiRswYNHBZRERERIanJEGKWiSa4OcvHebFg93UV4X42FUtlGcUISukaU1FREREioXGJEhRS7qz51gPACciMZ7a25HniERERESKn5IEKWo1FUHWLJsJwPlz61ixsCHPEYmIiIgUP3U3kqLh7hwPx2ioKc9af8HcOhpryplbX5WnyERERERKi54kSFE4Ho7ywK793L9zHz198axtZqYEQURERCSHlCRIwXN3fvD0G+zvjNAbS/DIS4fzHZKIiIhISVOSIAXPzFizbBYAZWZMrypX9WQRERGRCaQxCVJw3H1QXYOFTdVce84MFjVVM6uuMk+RTb5wNI5hBANGPOE4TnW5fm1FRERkYuluQwrKmyciPPziYd5x4RyaplVkbbticWOeopp8kViC7kiMu7e2sbl1P53hGA3VIdavnM/ta5ZQWxmiKhTId5giIiJSotTdSArG0/uO852d+zjc1cdPnz80ZbsURWIJWts7uf6Lj3Dv9j10hmMAdIZj3Lt9D9d/4RF2t3cSiSXyHKmIiIiUKiUJUjCaG6ooS3czOtYT5WhPX54jyo/u3hif3LSTvnhyyO198SS3bNpJd29skiMTERGRqUJJghSMGdMquGJxIy1N1XzsqhZm1U6dsQf9wtE4d29pGzZB6NcXT3LPljYi0fgZ24mIiIiMh5IEyYtXD59kX0d40PorFjXygRXN1FeF8hBV/hnG5tb9o2q7efcBwEZsJyIiIjJWGrgskyocjfPIi0d4+VA39VUhPnZVC+XB07lqWVnx3/SezYxEwYCdGoMwko6eKMFA8f+8REREpPAoSZBJ5Q7tHT0AnIjEeGpvB9ecMyPPUeVGLmYkiiechurQqBKFxppy4glHkxyJiIhIrqm7kUyqmooga5bNBODCeXWsbGnIc0S5kasZiRxn/cr5ozrn+hXNwNScAUpEREQmlpIEmTDuTkdPdND6C+bW8atXLGTdhXOoLJGvwXM1I1F1eZDb1yyhInjmX82KYBm3rVlClQqriYiIyARQkiATorMnyr/v2s/9O1+npy97Bh4zY0596cxclOsZiWorQ2zcsHrYRKEiWMbGDauprZyag7tFRERk4ilJkJxzd374zBsc6IzQF0vy8IuH8x3ShMr1jERVoQArWhrYdtdabr1uMY015UBqDMKt1y1m211rWdHSoIrLIiIiMmHUV0Fyzsy4cfksHti1nzIzmmrKSSa9JGYuGspEzEhUFQpQFQpwx7pl3Llu+amZksDVxUhEREQmXMk/STCzJjO71cweNLNXzSxiZifMbLuZ/bqZDfkzMLNrzOxHZtZhZmEze8bMPmNm+vp2APfBg2cXNFZz3bkz+NUrF3DNOTNKNkGA0zMSjUb/jESjVV0epKo8QChQRlV5QAmCiIiITIqSTxKADwHfAK4EngC+DHwXuAj4J+DfzCzrDtbM3gdsBW4AHgT+ASgHvgTcP1mBF4M3jke474nXOXqyb9C21Ysap0TVZM1IJCIiIqVmKiQJLwPvBea7+0fd/U/c/ZPAecA+4IPA+v7GZlZHKqlIADe6+6+7+x8ClwGPAzeZ2c2T/BkK0i/2HeffntrH0e4+fvr8IZLJqXnzqxmJREREpNSUfJLg7g+7+w/cPTlg/UHgH9Nvb8zYdBMwE7jf3Z/KaN8L/Fn67acnLuLiMb+hirL0Q5iOnihHewY/TZgqNCORiIiIlJKp/pVm/2jTzDkp35JePjRE+61AGLjGzCrc/Yx3xWa2a5hN540pygI1Y1oFVyxu5M0TEd56/mzqpvANcOaMRPdsaWPz7gN09ERprCln/YpmbhtlxWURERGRQjBlkwQzCwK/ln6bmRAsTy9fHriPu8fNbA9wIbAEeGFCgywgrx7upiIYYEFjddb6KxY1Ypaa0Wiq04xEIiIiUiqm8p3L35AavPwjd/9xxvr69PLEMPv1r58+0gncfdVQ69NPGFaOLsz8CkfjPPziYV45dJK6qhAfv6qF8owuNfmatSgcjWPYqRtxx6kukBvxzDj04EBERESKUWHcVU0yM/td4E7gReDjY909vZwSo3TdYV9HBICuSIyn9nZwzTkz8hZPJJagOxLj7q1tbG7dT2c4RkN1iPUr53O7uvSIiIiI5ETJD1weyMx+C/gK8Dyw1t07BjTpf1JQz9DqBrQraTUVQdYsmwnARc31rGxpyFsskViC1vZOrv/iI9y7fc+pAmad4Rj3bt/D9V94hN3tnURiibzFKCIiIlIKplSSYGafAb4GPEsqQTg4RLOX0stlQ+wfBBaTGujcNkFh5o27c2yIegfnz63lI1cu5O0XzKYyj9/Sd/fG+OSmnfTFk0Nu74snuWXTTrp7R1f9WERERESGNmWSBDO7i1QxtF+QShAOD9P04fTyHUNsuwGoBh4baWajYtPRE+Xfn9rPd57ax8m+eNY2M2N2XX6LooWjce7e0jZsgtCvL57kni1tRKLxM7YTERERkeFNiSTBzD5LaqDyLuCt7n70DM0fAI4CN5vZ5RnHqAQ+n3779YmKNR/cnf/3zBscOB6hL5bk4RcP415YQy4MY3Pr/lG13bz7AKeHjkimcDROJJoglkgSiSYIK5kSERGRIZT8wGUz+wTwP0hVUN4G/O4Q03XudfdNAO7eZWafIpUs/NzM7gc6SFVtXp5e/53JiX5ymBk3Lp/FA7v2U2bGjGnluEMhzWoaDNipMQgj6eiJEgwUUPAFQAO+RUREZCxKPkkgNYYAIAB8Zpg2W4BN/W/c/Xtmtgb4U+CDQCXwKnAH8FUvtK/Zx8jdB9U1WNBYzfXnzqClqYaZtRV5imx48YTTUB0aVaLQWFNOPOGafjStf8D3wPEc/QO+79vRzsYNq1nR0qBEQURERIAp0N3I3T/n7jbC68Yh9nvU3d/l7g3uXuXuF7v7l9y9qKfOOXA8wn1PvM7RIQYoX76osSATBADHWb9y/qjarl/RzBSZoXZUNOBbRERExqrkkwQ5bffrnfzbzn0c7e7jp88fIpksnhvp6vIgt69ZQkXwzJdsRbCM29YsUYXjNA34FhERkfFQkjCFLGysJpCukNzRE+VYTzTPEY1NbWWIjRtWD5soVATL2LhhNbWVoUmOrHBpwLeIiIiMh75unUKaplVw5eJGDnb18pbzZhXdzXRVKMCKlga23bWWe7a0sXn3ATp6ojTWlLN+RTO3aQDuIBrwLSIiIuOhJGGKWb2oETMGDVwuFlWhAFWhAHesW8ad65YTDBjxhAOuLkZD0IBvERERGQ91N5piysqsaBOETNXlQarKA4QCZVSVB5QgDEMDvkVERGQ8lCSIlDAN+BYREZHxUJIgUuI04FtERETGSkmCSInLHPB963WLaawpB1JjEG69bjHb7lqrQmoiIiKSRX0LRKYADfgWERGRsdDdgcgUUp2REOjBgYiIiAxH3Y1ERERERCSLkgQREREREcmiJEFERERERLIoSRARERERkSxKEkREREREJIuSBBERERERyaIkQUREREREsihJEBERERGRLEoSREREREQki5IEERERERHJoiRBRERERESymLvnO4Ypx8yOVVVVNZ5//vn5DkVEREREStQLL7xAJBLpcPemse6rJCEPzGwPUAfszXMo43VeevliXqOQUqHrSXJJ15Pkkq4nyZV8XUuLgC53XzzWHZUkyJiZ2S4Ad1+V71ik+Ol6klzS9SS5pOtJcqUYryWNSRARERERkSxKEkREREREJIuSBBERERERyaIkQUREREREsihJEBERERGRLJrdSEREREREsuhJgoiIiIiIZFGSICIiIiIiWZQkiIiIiIhIFiUJIiIiIiKSRUmCiIiIiIhkUZIgIiIiIiJZlCSIiIiIiEgWJQkCgJk1mdmtZvagmb1qZhEzO2Fm283s181syGvFzK4xsx+ZWYeZhc3sGTP7jJkFJvszSOEzs4+bmadftw7TRteUDMvMrjez75rZm2bWl17+xMzeNURbXUsyLDP75fS1sz/9f16bmf27mV09THtdT1OYmd1kZn9vZtvMrCv9/9h9I+wz5mvGzD5hZk+a2cn0fdjPzezduf9EI1MxNQHAzH4D+DrwJvAI8DowG1gP1APfBT7kGReMmb0vvb4X+A7QAbwHWA484O4fmszPIIXNzBYA/wUEgGnAp9z9nwa00TUlwzKzPwP+EjgK/JDUv1czgBXAI+7+RxltdS3JsMzsC8AfAceA75G6ps4B3gsEgV9z9/sy2ut6muLM7BfApcBJYD9wHvBtd//YMO3HfM2Y2f8C7kwf/wGgHLgZaAR+x92/lttPNQJ310svgLeQunjLBqyfQyphcOCDGevrgMNAH3B5xvpK4LF0+5vz/bn0KowXYMDPgNeAv01fH7cOaKNrSq8zXUMfSl8DPwVqh9geyvizriW9hn2l/19LAAeBWQO2rU1fH20Z63Q96dV/bZyb/v/sxvTf+33DtB3zNQNck17/KtCQsX4RqWS2F1g0mZ9Z3Y0EAHd/2N1/4O7JAesPAv+YfntjxqabgJnA/e7+VEb7XuDP0m8/PXERS5H5XVKJ6C1AzzBtdE3JkNLdHb8AhIGPuHv3wDbuHst4q2tJzqSFVHfrJ9z9cOYGd38E6CZ1/fTT9SS4+yPu/oqn79xHMJ5r5jfSy79y986MffYC/wBUkPo/dNIoSZDR6P/PN56x7i3p5UNDtN9K6j/za8ysYiIDk8JnZucDfwN8xd23nqGprikZzjXAYuBHQGe6L/ldZvZ7w/Qf17UkZ/IKEAWuMLMZmRvM7AagltSTz366nmSsxnPNnGmf/xjQZlIoSZAzMrMg8Gvpt5kX7vL08uWB+7h7HNhDql/nkgkNUApa+vr5Fqkua/9thOa6pmQ4q9PLQ0ArqfEIfwN8GXjMzLaYWeY3v7qWZFju3gHcRWrc3fNmdo+Z/bWZ/RvwE1Jd2m7P2EXXk4zVmK4ZM6sBmoGT7v7mEMd7Jb1clvtQhxeczJNJUfob4CLgR+7+44z19enliWH2618/fYLikuLw56QGlV7n7pER2uqakuHMSi9/g9R/rm8DniDVbeTvgF8C/p3TXSJ1LckZufuXzWwv8M/ApzI2vQpsGtANSdeTjNVYr5mCvMb0JEGGZWa/S2qU/YvAx8e6e3qp6bOmKDO7gtTTg79z98dzccj0UtfU1NM/XaABN7n7f7r7SXd/DvgAqZlA1gw3deUQdC1NcWb2R6Rmj9kELAVqgFVAG/BtM/viWA6XXup6ktEa7zUzqdeYkgQZkpn9FvAV4HlgbfrxbKb+rLaeodUNaCdTSEY3o5eBz45yN11TMpz+QXxt7v505ob0E6r+p5xXpJe6lmRYZnYjqYHw33f3O9y9zd3D7t5KKuk8ANxpZv3dh3Q9yViN9ZoZqf1ITxomhJIEGcTMPgN8DXiWVIJwcIhmL6WXg/rHpW8QF5Ma6Nw2QWFKYZtG6to4H+jNKKDmwF+k23wjve7L6fe6pmQ4/dfG8WG29ycRVQPa61qSofQXpnpk4AZ3DwNPkro/WpFeretJxmpM14y795BKTqeZ2dwhjnduejlojMNEUpIgWczsLuBLwC9IJQiHh2n6cHr5jiG23QBUA4+5e1/Og5Ri0AfcO8xrd7rN9vT7/q5IuqZkOFtJ/Yd6rpmVD7H9ovRyb3qpa0nOpH9GmZnDbO9fH00vdT3JWI3nmjnTPu8c0GZy5Ls4hV6F8yLVLcSBp4DGEdrWAUdQcRm9xvgCPsfwxdR0Tek13HVzX/oa+PyA9W8HkqSeMkxPr9O1pNewL+BX0tfAQaB5wLZ3pq+nCNCUXqfrSa+B19CNjFxMbUzXDAVYTM3SAcgUZ2afIDWAKwH8PUP3e9vr7psy9nk/qYFfvcD9pEqOv5d0yXHgV1wXmAxgZp8j1eXoU+7+TwO2vR9dUzIEM5sFPAqcA2wj1SWkhVQfcidVZO3fM9q/H11LMoR0cb4fk5olqxt4kFTCcD6prkgGfMbdv5Kxz/vR9TSlpa+B96ffziE1q1obqX+PAI66+x8MaD+ma8bM/g64g9RkDA8A5cCHgSbgd9z9a7n/ZMNTkiBA1o3bmWxx9xsH7Hct8KfA1aQy5FdJTSn3VXdP5D5SKXZnShLS23VNyZDMrJFUtdIPkJpTvJtUt7W/dvcdQ7TXtSRDMrMQ8FvAzcAFpLp/dJBKPr/q7j8ZYh9dT1PYKO6T2t190YB9xnzNpL+0/W1S12WSVG2Yv3X3H57lRxgzJQkiIiIiIpJFA5dFRERERCSLkgQREREREcmiJEFERERERLIoSRARERERkSxKEkREREREJIuSBBERERERyaIkQUREREREsihJEBERERGRLEoSREREREQki5IEERERERHJoiRBREREADCz3zez3893HCKSf8F8ByAiIiL5Z2a3A3+d/nOPu9+T55BEJI/M3fMdg4iIiOSRmS0BngbuINXL4H8Bl7j7nrwGJiJ5oyRBRERkCjOzMuDnwGvufkt63TeBFmCtuyfzGJ6I5ImSBBERERERyaKByyIiIiIikkVJgoiIiIiIZFGSICJSQsxsr5ntHbBukZm5mW3KT1RjM9RnyKdi+/mJiOSCkgQRkTFK3zBmvhJmdtTMHjazj+Y7vlzTTXJpMrPPpv9e/+kMbVaZWbeZHTazcyczPhHJL9VJEBEZv/+eXoaA5cD7gbVmtsrd78hbVIMdAM4HTuQ7ECkoXwF+H/i4mX3O3fdnbjSzc4AfAQb8sru/kocYRSRP9CRBRGSc3P1z6defuvtNwC8BDnzGzBblN7rT3D3m7i+6+5v5jkUKh7t3AV8CyoE/yNxmZrOBHwONwE3uvnPyIxSRfFKSICKSI+7+n8CLpL55XQ3ZXXXMbJmZfSfddSNpZjf272tmV5rZA2Z20MyiZrbPzO42s3kDz2Mpv21mz5lZr5kdMLOvmVn9UHGdqbuQmV2RjumAmfWZ2Ztm9hMz+5X09s8B/QW1PjGgm9WGAceasM8wHDO7Oh3L5jO0eSH92RrT7zeY2XfNrM3MImbWZWaPmtnHxnDeG9Pn/dww24cdVzHGn9N7zew/038vfWb2hpltMbPfHG2sI/gK0Al8ysxmpM9ZC/wHsAT4dXd/KEfnEpEiou5GIiK5ZenlwCI0S4EngJeBbwNVQBeAmd0CfAPoA74P7APOBW4F3mNmV7n76xnH+jLwu8CbwD1ADHgfcCWpb4WjowrU7FPA14FE+ryvALOAy4HfBP6NVJGt6cDvkarI+72MQ/wi41h5+Qzu/riZvQS828ya3P3YgM94BXAe8F1370iv/jrwPLA1ff4m4F3At8xsubt/djTnHo+x/JzM7DbgbuAg8APgKKm/n0uAW4D/M+DYm4BPALe4+6bRxOPuXWb2ZVJd537PzP4SeBBYAdzl7t88i48rIsXM3fXSSy+99BrDi1QC4EOsfxuQTL9a0usW9bcH/ucQ+ywjdUP8KtA8YNtbSN3AP5ix7pr0sV4FGjPWVwKPp7ftHXCc/hg2Zay7gNSNeQdw4RBxzT/T/pP9GUb4+/iT9D6/PcS2f0hve0/GuqVDtCsH/jP9Mxn4GYb6+d2YXve5YWLaO8Tfw1h/TrtIJROzhjj+jCHWbUrHtGGM13Nd+jroBL6bPsaXJ/N3Si+99Cq8l7obiYiMk5l9Lv36KzN7AHiI1JOEL7t7+4Dmhzg90DnTp0kNfP49dz+QucHdHyb1bfN70l1AIPUNMsBf+elvxnH3XlI3y6P1aVJPk//S3Z8buNEHDGIdxbHy8Rn6fYtUYvaJzJVmVg7cDBwm1X2m/zyvDTyAu0dJJRRB4K3jiGE0xvpzAoiTSlwGxnt0iOP/CakB6g+OJShPjU34MqknRuuB75Aa0CwiU5i6G4mIjN9fpJcOHAe2Afe6+31DtH3a3fuGWH91ernGzFYPsX0WECD1LfQuYGV6/ZYh2m4jdVM5Glell/9xxlajk6/PAKQSGjP7T+DtZnaBuz+f3vQeUgNvv+Tup45pZguBu0glAwtJdf3K1DyW84/BWH9O3wb+DnjOzL5D6uf1qLsfGergnhqYPt7B6feTSmL3A7/m7gO7y4nIFKMkQURknNzdRm51ysFh1jell384wv7T0sv+gb2HhognYWbHBq4fxvT08sCZGo1Svj5Dpk3A20k9Tbgrva7/ycK/9DcysyXAk0ADqYTkJ6Smhk2Q6lb0CaBiHOcfjTH9nNz9f5vZUVLjQ34X+AzgZrYF+EN3fyqHsV2YXj6RfqoiIlOckgQRkckx3Dez/bUL6tPdPkbS33420Ja5wcwCpG5ER3Pjfzy9bCY1I9PZyNdnyPQgqYHgHzOz/0bqCcI7ST3BeTqj3R3p4w8a3Gtmv8qALktnkEwvh/t/tJ7BdSnG+nPCUwOHv2lm00mN5fgA8Engx2Z2vrsfHmW8I1mVXuYy8RCRIqYxCSIi+bUjvbx+lO1b08s1Q2y7ntF/+dN/3neOom0ivQyMcKzJ/gynuHuE1GxM80gNIP9o+jj/MqDpOenld4c4zFDxDKczvVwwcIOlipBNH2Kfsf6cTnH34+7+I3f/FKmnJo3jOc4ZXJ5eKkkQEUBJgohIvn2N1MDUL5nZsoEbzazczDJvBjell3/aP+9/ul0l8NdjOO/XSfX9/6yZXTDEeednvO0k9SRkYYF9hoH6j/tr6VecVL/+THvTyxsHxPhLpKYhHa0XST25eJ+Zzco4ThXw1WH2GdPPyczeYWZDJUz95wsP2H+umZ031loTaf1PEnaNY18RKUHqbiQikkfu/qKZfRL4Z1IDVB8iVUshROqm/HrgCKm5/nH3R83s74HfAZ5Nz6rUX2Ogk1EOXHX359MFuf4R2G1m/x+pOglNpL5V7gbWptueNLMngOvN7Nvp+BLA9939mXx9hiE+06Nm9irwofS5fzBEd5z/Q2p2pX83s++S6tZ0EfAOUk8iPjzKc8XM7CvAZ0n9/B4k9X/q24E30q+B+4zp50RqMHGvmW0nldxYus1qUjfzPxtwir8mXSeB0wnTiMysBZgBtLl750jtRWRqUJIgIpJn7n6fmT0N3Enqxnwd0EPqRvMBUlNSZvo9UjeXvwXcDhwj1Sf/v5EqeDba837DzJ4F/oDUN+vvJ1Ww6xngnwY0/zjwJVI3079K6oZ1f7pt3j7DEP4F+MuMP2dx92fMbC3weVIF1ILp860nNU5jVElC2l+Q+jb/U8BtpAan3w98jlSxtkHG+HP6Y+CXSM0G9S6gF2gnNTD76+4+aGrUcdJ4BBEZxDTLmYiIiIiIZNKYBBERERERyaIkQUREREREsihJEBERERGRLEoSREREREQki5IEERERERHJoiRBRERERESyKEkQEREREZEsShJERERERCSLkgQREREREcmiJEFERERERLIoSRARERERkSxKEkREREREJIuSBBERERERyaIkQUREREREsihJEBERERGRLEoSREREREQki5IEERERERHJ8v8DtaBhLIesvFUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 264, "width": 388 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "y_pred = mod_edu.predict()\n", "sns.scatterplot(x = y_pred, y = df_income['Income'])\n", "sns.lineplot(x = df_income['Income'], y = df_income['Income'], alpha = .5, linestyle = \"dotted\")\n", "plt.xlabel(\"Predicted values: $\\hat{Y}$\")\n", "plt.ylabel(\"Real values: $Y$\")" ] }, { "cell_type": "markdown", "id": "26f60405", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Plotting *residuals*\n", "\n", "> The **residuals** of a model are the *difference* between each predicted value $\\hat{Y}$ and real value $Y$.\n", "\n", "- We can calculate the residuals directly: $\\hat{Y} - Y$.\n", "- Or we can access them using `mod.resid`." ] }, { "cell_type": "code", "execution_count": 11, "id": "9655927d", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Residuals')" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAILCAYAAACXXREvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAABGMUlEQVR4nO3dfXyceV3v/9enM5M0qWVJubfV0ipdULxJlx5l6W634Kmg3BnhAB6Fdq2tiHKz5fergjeLBxUQD4IotlBaOAuCLgEVARV2tzfCQtmUA8o96RZaQMTG3WyTNjPJ9/wxM900Tdq5mpnJTOb1fDzmcXWu6ztzfdOZTK73fO8ipYQkSZIk1WrJQldAkiRJUnsxREiSJEnKxBAhSZIkKRNDhCRJkqRMDBGSJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTPILXQFBRBwHHgDcvcBVkSRJ0uL1SODelNKa+T6RIaI1PKCnp2fFYx7zmBULXRFJkiQtTl/4whcYHx+vy3MZIlrD3Y95zGNW3HXXXQtdD0mSJC1S11xzDUNDQ3fX47kcEyFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKpONCREQ8KCK2R8T7I+KrETEeEfdExJGI+OWImPX/JCKujYgPRcTpiBiLiM9GxEsjItfsn0GSJElaSJ24YvWzgbcA3wJuB74OPAwYAN4GPCUinp1SStUHRMQzgPcBZ4H3AqeBpwFvAJ5QeU5JkiSpI3RiiPgy8HTgH1JKU9WdEfEK4FPAz1MOFO+r7H8A8FZgErghpfTpyv7fAW4DnhURz00pvaepP4UkSZK0QDquO1NK6baU0t9PDxCV/d8G/rJy94Zph54FPAR4TzVAVMqfBX67cveFjauxpHY0NlFifGKS4uQU4xOTjE2UFrpKkiTVTSe2RFxKsbKd/tf+iZXtR2YpfwgYA66NiO6U0rlGVk5S6xsvTjI6XmTPoWEGh04yMlakr7fAwPpV7Ny0luVLC/QUHEolSWpvhoiKiMgDz6/cnR4Yrq5svzzzMSmlUkQcB34YWAt84TLnuGuOQ4/OVltJrWi8OMnQiRFuPHCUc6X7GztHxorsO3KcW+48wf6tG+hf3WeQkCS1tY7rznQJrwEeC3wopfSP0/ZfVdneM8fjqvsf2KB6SWoTo2eLFwWI6c6Vpth24CijZ4uzHpckqV0YIoCIeDGwC/gi8EtZH17ZpkuWAlJK18x2q5xXUhsbmyix5+DwnAGi6lxpir0Hhxl3jIQkqY11fIiIiBcBbwQ+D2xOKZ2eUaTa0nAVs3vAjHKSOlAQDA6drKns4LFT3P/9gyRJ7aejQ0REvBR4M/CvlAPEt2cp9qXKdt0sj88DaygPxB5uUDUltYF8LhgZq62b0ukzE+RzhghJUvvq2BAREbspLxb3GcoB4jtzFL2tsn3yLMeuB3qBjzszk9TZSpOJvt5CTWVXLOuiNHnZHpCSJLWsjgwRlYXiXgPcBTwppfTdSxS/Ffgu8NyIeNy051gKvLpy9y2Nqquk9pBIDKxfVVPZgf6V1DCMSpKkltVxU7xGxAuA36e8AvVh4MURF3UruDuldAAgpXRvRPwK5TBxR0S8BzhNedXrqyv739uc2ktqVb1deXZuWsstd5645ODq7vwSdmxaS09Xx338SpIWkU78K7amss0BL52jzEHgQPVOSukDEbEJeCXw88BS4KvATcCbUkp+pSiJ5UsL7N+6gW1zTPPanV/C/q0bWL60tm5PkiS1qo4LESmlm4Gbr+Bx/wL8TL3rI2nx6Cnk6F/dx+Hdm9l7cJjBY6c4fWaCFcu6GOhfyQ5XrJYkLRIdFyIkqZF6Cjl6Cjlu2rKOXVuuJp+LyiDqZBcmSdKi4V80SWqA3mmBwYYHSdJi05GzM0mSJEm6coYISZIkSZkYIiRJkiRlYoiQJEmSlIkhQpIkSVImzs4ktYmxiRJBnJ8yNJEumAFIkiSpWbwCkVrceHGS0fEiew4NMzh0kpGxIn29BQbWr2Kni5dJkqQFYIiQWth4cZKhEyPceOAo50pT5/ePjBXZd+Q4t9x5gv1bN9C/us8gIUmqG1u/dTm+G6QWNnq2eFGAmO5caYptB45yePdmQ4Qkad5s/VatHFgttaixiRJ7Dg7PGSCqzpWm2HtwmPGJUpNqJklajKqt39e97nb2HTnOyFgRuL/1+7rX3s6xEyOMFycXuKbtbWyixPjEJMXJKcYnJhlr07/fhgipRQXB4NDJmsoOHjsFRGMrJEla1Gpt/R49W2xyzRaH8eIk37n3LH/yT1/m2td8jEe98sNc+5qP8Sf/9GW+M3q27cKZIUJqUflcnP8W6HJOn5kgnzNESJKujK3fjbUYW3kMEVKLKk0m+noLNZVdsayL0mRqcI0kSYuVrd+NtRhbeQwRUotKJAbWr6qp7ED/SsAQIUm6MrZ+N85ibeUxREgtqrcrz85Na+nOX/rXtDu/hB2b1tLj1HuSpCtk63fjLNZWHkOE1MKWLy2wf+uGOYNEd34J+7duYPnS2j74JUmaja3fjbNYW3kMEVIL6ynk6F/dx+Hdm9m+cQ0rlnUB5W+Btm9cw+Hdm11oTpI0b7Z+N85ibeXxHSC1uJ5Cjp5Cjpu2rGPXlqvPrx4KyQ9xSVLdVFu/t80xANjW7ytTbeXZd+T4Zcu2UyuPLRFSm+jtytPTlaOQW0JPV84AIUmqK1u/G2OxtvK0Ry0lSZLUcLZ+N8ZibOXx3SBJkqQL9E4LDDY8zN/0Vp69B4cZPHaK02cmWLGsi4H+lezYtJblSwtt1cpjiJAkSZIabLG18rRfjSVJkqQ2tVhaeRxYLUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKxBAhSZIkKRNDhCRJkqRMDBGSJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKJL/QFZCkhTY2USII8rmgNJlIJHq7/HiUJGku/pWU1LHGi5OMjhfZc2iYwaGTjIwV6estMLB+FTs3rWX50gI9hdxCV1OSpJZjiJDUkcaLkwydGOHGA0c5V5o6v39krMi+I8e55c4T7N+6gf7VfQYJSZJmcEyEpI40erZ4UYCY7lxpim0HjjJ6ttjkmkmSWsHYRInxiUmKk1OMT0wyNlFa6Cq1FFsiJHWcsYkSew4Ozxkgqs6Vpth7cJhdW9bR4xgJSeoIdnWtjS0RkjpOEAwOnayp7OCxU0A0tkKSpJZQ7ep63etuZ9+R44yMlVujq11dr3vt7Rw7McJ4cXKBa7rwDBGSOk4+F+f/MFzO6TMT5HOGCEnqBHZ1rZ0hQlLHKU0m+noLNZVdsayL0mRqcI0kSQsta1fX8Q4fI2GIkNRxEomB9atqKjvQvxIwREjSYmdX12wMEZI6Tm9Xnp2b1tKdv/RHYHd+CTs2rXVQtSR1ALu6ZmOIkNSRli8tsH/rhjmDRHd+Cfu3bmD50tq6PUmS2ptdXbMxREjqSD2FHP2r+zi8ezPbN65hxbIuoPyHYfvGNRzevdmF5iSpg9jVNRvb6CV1rJ5Cjp5Cjpu2rGPXlqvJ56LyzVKyC5MkdZhqV9db7jxxycHVdnUtsyVCUsfr7crT05WjkFtCT1eu4/8wSFKnsqtr7QwRkiRJEnZ1zcKv2yRJkqQKu7rWxv8JSZIkaYbeaYHBhoeL2Z1JkiRJUiaGCEmSJEmZGCIkSZIkZWKIkCRJkpSJIUKSJElSJoYISZIkSZkYIiRJkiRlYoiQJEmSlIkhQpIkSVImhghJkiRJmRgiJEmSJGViiJAkSZKUiSFCkiRJUiaGCEmSJEmZGCIkSZIkZWKIkCRJkpSJIUKSJElSJoYISZIkSZl0XIiIiGdFxJ9FxOGIuDciUkTccpnHXBsRH4qI0xExFhGfjYiXRkSuWfWWJEmSWkV+oSuwAH4b+DHgPuAk8OhLFY6IZwDvA84C7wVOA08D3gA8AXh2Iyur9jM2USII8rmgNJlIJHq7OvFXTZIkLVadeGXzMsrh4avAJuD2uQpGxAOAtwKTwA0ppU9X9v8OcBvwrIh4bkrpPQ2vtVreeHGS0fEiew4NMzh0kpGxIn29BQbWr2LnprUsX1qgp2DjlSRJan8d150ppXR7SukrKaVUQ/FnAQ8B3lMNEJXnOEu5RQPghQ2optrMeHGSoRMjXPe629l35DgjY0UARsaK7DtynOteezvHTowwXpxc4JpKkiTNX8eFiIyeWNl+ZJZjh4Ax4NqI6G5eldSKRs8WufHAUc6VpmY9fq40xbYDRxk9W2xyzSRJkurPEHFpV1e2X555IKVUAo5T7hK2tpYni4i7ZrtxmXEZam1jEyX2HByeM0BUnStNsffgMOMTpSbVTJIkqTEMEZd2VWV7zxzHq/sf2PiqqFUFweDQyZrKDh47BURjKyRJktRgnTiwup6qV4O1jK8gpXTNrE9Sbo1YX69KqbnyuTg/BuJyTp+ZIJ8zREiSpPZmS8SlVVsarprj+ANmlFMHKk0m+noLNZVdsayL0mRNmVOSJKllGSIu7UuV7bqZByIiD6wBSsBwMyul1pJIDKxfVVPZgf6V1NhwJUmS1LIMEZd2W2X75FmOXQ/0Ah9PKZ1rXpXUanq78uzctJbu/KV/nbrzS9ixaS09LjwnSZLanCHi0m4Fvgs8NyIeV90ZEUuBV1fuvmUhKqbWsnxpgf1bN8wZJLrzS9i/dQPLl9bW7UmSJKmVddxXohHxTOCZlbsPr2wfHxEHKv/+bkrp5QAppXsj4lcoh4k7IuI9wGng6ZSnf70VeG9zaq5W1lPI0b+6j8O7N7P34DCDx05x+swEK5Z1MdC/kh2uWC1JkhaRjgsRwI8DL5ixby33r/VwAnh59UBK6QMRsQl4JfDzwFLgq8BNwJtqXPlaHaCnkKOnkOOmLevYteVq8rmoDKJOdmGSJEmLSsdd2aSUbgZuzviYfwF+phH10cIZmygRxPmL/USitw4X+9Ofw4YHSZK0GHVciJDGi5OMjhfZc2iYwaGTjIwV6estMLB+FTvtdiRJknRZhgh1lPHiJEMnRrjxwFHOlabO7x8ZK7LvyHFuufME+7duoH91n0FCkiRpDs7OpI4yerZ4UYCY7lxpim0HjjJ6trYVqCVJkjqRIUIdY2yixJ6Dw3MGiKpzpSn2HhxmfKLUpJpJkiS1F0OEOkYQDA6drKns4LFTQDS2QpIkSW3KEKGOkc8FI2O1dVM6fWaCfM4QIUmSNBtDhDpGaTLR11vbitErlnVV1niQJEnSTIYIdYxEYmD9qprKDvSvBAwRkiRJszFEqGP0duXZuWkt3flLv+2780vYsWmtq0xLkiTNwRChjrJ8aYH9WzfMGSS680vYv3UDy5fW1u1JkiSpExki1FF6Cjn6V/dxePdmtm9cw4plXUB5DMT2jWs4vHuzC81JkiRdhv011HF6Cjl6Cjlu2rKOXVuuJp+LyiDqZBcmSZKkGnjFpI7VOy0w2PAgSZJUO7szSZIkScrEECFJkiQpE0OEJEmSpEwcEyFJUgONTZQI4vwkDol0wZgsSWpHfopJktQA48VJRseL7Dk0zODQSUbGivT1FhhYv4qdm9ayfGnB6aQltS1DhCRJdTZenGToxAg3HjjKudLU+f0jY0X2HTnOLXeeYP/WDa5LI6ltOSZCkqQ6Gz1bvChATHeuNMW2A0cZPVtscs0kqT4MEZIk1dHYRIk9B4fnDBBV50pT7D04zPhEqUk1k6T6MUSorsYmSoxPTFKcnGJ8YpIx/zhK6jBBMDh0sqayg8dOAdHYCklSAzgmQnXhAEJJKsvngpGx2ropnT4zQT5niJDUfmyJ0LxVBxBe97rb2Xfk+Pk/ntUBhNe99naOnRhhvDi5wDWVpMYrTSb6egs1lV2xrIvSZGpwjSSp/gwRmjcHEErS/RKJgfWraio70L8SMERIaj+GCM2LAwgl6UK9XXl2blpLd/7Sf2K780vYsWktPS48J6kNGSI0Lw4glKSLLV9aYP/WDXMGie78EvZv3cDypbV1e5KkVmOI0Lw4gFCSLtZTyNG/uo/DuzezfeMaVizrAspjILZvXMPh3ZtdaE5SW7MNVfNSHUBYS5CoDiD0b6akTtBTyNFTyHHTlnXs2nI1+VxUBlEnuzBJanu2RGheHEAoSZfW25WnpytHIbeEnq6cAULSomCI0Lw4gFCSJKnzGCI0bw4glCRJ6iyGCM2bAwglSZI6i31LVBcOIJQkSeocXt2prnqnBQYbHiRJkhYnQ4RUZ2MTJYI43xqTSBeEK0mSpHbnlY1UJ+PFSUbHi+w5NMzg0ElGxor09RYYWL+KnZvWsnxpwXEhkiRpUTBESHUwXpxk6MQINx44yrnS1Pn9I2NF9h05zi13nmD/1g0OMJckSYuCszNJdTB6tnhRgJjuXGmKbQeOMnr28it7S5IktTpDhDRPYxMl9hwcnjNAVJ0rTbH34DDjE6Um1UySJKkxDBHSPAXB4NDJmsoOHjsFRGMrJEmS1GCGCGme8rlgZKy2bkqnz0yQzxkiJElSezNESPNUmkz09RZqKrtiWVdlET5JkqT2ZYiQ5imRGFi/qqayA/0rAUOEJElqb4YIaZ56u/Ls3LSW7vylf52680vYsWktPS48J0mS2pwhQqqD5UsL7N+6Yc4g0Z1fwv6tG1i+tLZuT5IkSa3Mr0SlOugp5Ohf3cfh3ZvZe3CYwWOnOH1mghXLuhjoX8kOV6yWpLobmygRBPlcUJpMJBK9tvZKTeFvmlQnPYUcPYUcN21Zx64tV5//owbJLkySVEfjxUlGx4vsOTTM4NBJRsaK9PUWGFi/ip1+aSM1hVc2Up1N/xbMv2GSVF/jxUmGToxw44GjFyzyOTJWZN+R49xy5wn2b91A/+o+g4TUQI6JkCRJbWP0bPGiADHdudIU2w4cZfRsbev3SLoyhghJktQWxiZK7Dk4PGeAqDpXmmLvwWHGJ0pNqpnUeQwRkiSpLQTB4NDJmsoOHjsFRGMrJHUwQ4QkSWoL+VwwMlZbN6XTZybI5wwRUqMYIiRJUlsoTSb6emtbb2fFsq7KDHmSGsEQIUmS2kIiMbB+VU1lB/pXAoYIqVEMEZIkqS30duXZuWkt3flLX75055ewY9Na1+iRGsgQIUmS2sbypQX2b90wZ5Dozi9h/9YNLF9aW7cnSVfGECFJktpGTyFH/+o+Du/ezPaNa1ixrAsoj4HYvnENh3dvdqE5qQnq2s4XEf3A44F3pZTuqexbBvwF8AxgDHhtSumN9TyvJEnqHD2FHD2FHDdtWceuLVeTz0VlEHWyC5PUJPVuidgNvLIaICr+CPilyrkeBPzviNhS5/NKkqQO09uVp6crRyG3hJ6unAFCaqJ6h4jHAXdU70REAXgB8CngocAa4LvAi+t8XkmSJElNUu8Q8VDgG9PuPw5YDuxJKZ1NKX0T+FvgR+t8XkmSJElNUu8QkbhwnMXGyr6D0/b9B/CQOp9XkiRJUpPUO0R8HfjJafefAZxMKQ1P2/e9wEidzytJkiSpSeodIv4auDYibo2IWyjP1HTrjDKPBb5W5/NKkiRJapJ6T2PwBuDJwEDl/meA368ejIgfAq4B/rDO55UkSZLUJHUNESml+4AnRMRjK7s+n1KamlZkDPg54NP1PK8kSZKk5mnIhMoppX+dY//dwN2NOKckSZKk5qj3mAhJkiRJi9y8WiIi4rYrfGhKKT1pPueWJEmStDDm253phit8XJrneSVJkiQtkHmFiJSS3aEkSZKkDtOQgdWS6m9sokQQ5HNBaTKRSPR2+SssSZKazysQqcWNFycZHS+y59Awg0MnGRkr0tdbYGD9KnZuWsvypQV6CrmFrqYkSeogDQsREbEKWAl0z3Y8pXSoUeeWFovx4iRDJ0a48cBRzpXuX3JlZKzIviPHueXOE+zfuoH+1X0GCUmS1DR1DxERsYXyytWPvkxRr3ikyxg9W7woQEx3rjTFtgNHObx7syFCUsexm6e0cOr6mxYRPwF8EPgP4M3AbwAHgS8B1wGPAf4OOFbP8zZDpWXl94EnAw8CvgV8AHhVSmlkAaumRWpsosSeg8NzBoiqc6Up9h4cZteWdfT4x1NSB7Cbp7Tw6j270iuAs8CGlNJLKvtuTyn9KvBY4H8BPwXcWufzNlRE/ABwF7AN+BTllpZh4CXAJyLiQQtYPS1SQTA4dLKmsoPHTgHR2ApJUguodvO87nW3s+/IcUbGisD93Tyve+3tHDsxwnhxcoFrKi1u9Q4Rjwf+LqX0zZnnSGW/B3wBeFWdz9tofwE8FHhxSumZKaXfTCk9kXKYuBr4gwWtnRalfC7O/3G8nNNnJsjnDBGSFr9au3mOnq3t81PSlal3iLgK+Pq0+xPAshll/gW4vs7nbZiIWAtsAe4G/nzG4d8DzgC/FBEzf05pXkqTib7eQk1lVyzrojTpGo6SFres3TzHJ0pNqpnUeeodIr4D9M24/wMzyhSAnjqft5GeWNn+U0rpgk+tlNIo5VDUC/xksyumxS2RGFi/qqayA/0rcSF4SYud3Tyl1lHvUZhf5sLQcCfwlIhYl1L6ckQ8HPh54Ct1Pm8jXV3ZfnmO41+h3FKxDvjYpZ4oIu6a49Cjv3PvOR75m/8AwEue9Che9t/XXVDg1R/8PG87chyAV/7MY/iV69decPy3Bj/LX33qGwD84c/9CL/wE99/wfEX/9Ux/u7/lnuZvfG5P84zfnzlBcd/+cBRPvbF7wDwtuc/jp/6oYddcPw5ez7BJ4+fBuCvfuUnefwPXDgM5Kl/dph/PXUvAH//6xv5kVVXXXB88+vv4Ph3zwBw265NrH3I91xw/L/9wUf5zug5AD75iifxsAcsveD4D//uRzgzUe7f+q+v+mm+p/vCt271/w7g7tf87AXH7jtX4rG/948ALOvK8W+//+QLjv/7vWf5iT8sv3QPXd7Np175UxccH/6P+3jinxwEYM2Dl3H7y2+44PjnTt7D0958BIDHrnwAH/yN6y44/omv/SfPe+udAPzEmhW8d+fjLzj+0c//O9vf+WkAnvToh7Jv6wYAervy7Ny0lnd8/G5KU3MHhPyS4G1HjvO2I8d53n/7Pv5o4EcvOP7WQ8P8wYe+AMD2jWv47af+0AXH3/DPX+aNHyv/Svre87033d9+5hQvec9nAHj6j30vb3pe/wXH3/3Jr/OK938OwPee770LjjfqvZe1m+djfvcjvvd8711wvNM/90785xj1Uu+WiI8AmyJiReX+Gym3OhyLiKPAF4GHAH9a5/M2UvU38545jlf3P7DxVVGnWb60wM4ZHyDTdeeX8IJrH9m8CknSAsrSzVNSY9U7ROyhPN6hCJBS+hfg2cBxyrMzfQt4YUrpnXU+70KqtpVeti9JSuma2W6Uw5V0kZ5Cjkc++P7hNl258q/simVdbN+4hsO7N/P9K3oXqnqS1FRZunlKaqxIyX7UlxIRfwy8HHh5SulPZjn+ZuBFwK+llN5yhee4a/369evvumuu3k7SxYsqQXJdCEkd5zujZ7nutbdfcnB1d34Jh3dv5qHLl85ZRupE11xzDUNDQ0OVL7Hnpd4tEYvRlyrbdXMcf1RlO9eYCakuervy9HTlKOSW0NOVM0BI6kjLlxbYv3UD3fnZL2G680vYv3UDy5fa7akVjU2UGJ+YpDg5xfjEJGPOoNW2vAq5vNsr2y0RsWT6DE0RsRx4AjBOeRC5JElqoJ5Cjv7VfRzevZm9B4cZPHaK02cmWLGsi4H+lexwxeqW5Crji09dQ0REDNdYNKWUZk792pJSSl+LiH+iPAPTi4A/m3b4VZTXwdiTUjqzEPWTJKnT9BRy9BRy3LRlHbu2XG03zxZXXWV85iKB1VXGb7nzBPu3bqB/dZ9Boo3UuzvTEsoDjWfeHgg8snLrasB5G+3XKK958aaI+EBE/FFE3Aa8jHI3plcuaO0kSepAdvNsD64yvjjV9WI+pfTIlNKaWW4rKI8p+AjwNeAx9Txvo6WUvgY8DjgA/ASwi/J6GG8CHp9S+s+Fq50kSVJrcpXxxatpLQIppa8CA8BK4Peadd56SSl9I6W0LaX0iJRSV0ppdUrpJSml0wtdN0mSpFbkKuOLV1O7FaWUzgL/DDyvmeeVJElS82VdZTyfM0S0i4UYm1ACHr4A55UkSVITZVllfMWyrsoAebWDpoaIiHgw8HPAN5p5XkmSJDVfllXGB/pXAoaIdlHvKV5/9xLn+T7gGcBVwG/V87ySJElqPb1deXZuWsstd5647CrjOzatdYatNlLvV+rmyxy/F3h1Sul1dT6vJEmSWtDypQXevnXDnNO8dueX8HZXGW879Q4Rm+fYPwWMAF9MKTl3lyRJUgdZ1dfDP770et75ibv5wGe+eX6V8Wf++Pfy/Mc/kiWOp247dQ0RKaWD9Xw+SZIktbfRs0W2vOEQP/jQ7+F//sRq/vGl1/E93QXuO1fknz//7/zau4b42n/cx+Hdm12xuo3Y8UySpAYamygRBPlcUJpMJBK99vtWh5i+2Ny/ffNeXvH+z/GK989edu/BYXZtWee4iDYxr1cpIr7/Sh+bUvr6fM4tSZ3IC9L2MV6cZHS8yJ5DwwwOnWRkrEhfb4GB9avYuWkty5cW/NZVi17WxeZ2bbm6wTVSvcz3L8/dXNlcXKkO55akjuEFaXsZL04ydGLkooGkI2NF9h05zi13nmD/1g30r+5rqdfNkKqqer0XXGxu8ZrvJ8M7uThErAGuB+4BPgN8m/Licj9OeXrXQ8DxeZ5XkjpGu16QdrLRs8U5Z6IBOFeaYtuBoy3TB9yQqqp6vxeqi83VEiSqi835VmsP81psLqW0NaW0rXoDXgP8KPAGYHVKaXNK6Xkppc3AauCNwI8AfzTfiktSp6j1gnT0bG3f9qmxpvcBv5RzpSn2HhxmfGJhJy2shtTrXnc7+44cP3+xVw2p1732do6dGGG8OLmg9VTjNeK94GJzi1e9V6x+DfC5lNKulNK90w+klO5NKb0M+LdKOUnSZbTbBamy9wGHhe2+YUhVVSPeC9XF5rrzl77kdLG59lPvEHE9cOQyZY4Am+p8XklalNrtglTt1QfckKqqRr4Xli8tsH/rhjmDRHd+CftdbK7t1DtEdFMe/3Apj6iUkyRdRjtdkKqs2ge8FtU+4AvFkKqqRr4Xego5+lf3cXj3ZrZvXMOKZV1A+f2/feMaDu/e7JiuNlTvNqNjwHMj4s0ppWMzD0bENcBzgE/X+byStCg5KLH9VPuA7zty+TlEFroPuCFVVY1+L/QUcvQUcty0ZR27tlx9ftYnSHZhalP1bol4FeVWhjsj4u0RsTUinlLZ7gc+DhQq5SRJl+GgxPbTTn3A26nVRI3VrPdCb1eenq4chdwSerpyBog2VtcQkVL6KPBc4D5gK7AP+GBl+4LK/uemlD5Wz/NK0mLVThekul+79AE3pKrK94KyqndLBCmlW4HvB36R8lSvb69sfxH4/pTS++p9TklazNrlglT3a5c+4IZUVfleUFaRkklyoUXEXevXr19/1113LXRVJLWo8eIko2eL7D04zOCxU5w+M8GKZV0M9K9kh4uBtbSZK/+2Wh/w8eIkx06MsG2OqT2rIbUVQo8ay/fC4nfNNdcwNDQ0lFK6Zr7PZYhoAYYISbVq9QtStSdDqqp8LyxuLRMiIuL5lX++P6U0Ou3+ZaWU3nnFJ15kDBGSpFZgSFWV74XGmfl/m0j0Nun/tp4hYr41PkB5ZM2dwOi0+5cSlTKGCEmSWsj0Cxm/bO5svhfqb7w4yeh4kT2HhhkcOsnIWJG+3gID61exsw1beeYbIm6kHAi+Vbm/bZ7PJ0mSJC0q48VJhk6McOOM8SYjY0X2HTnOLXeeaLvxJvMKESmlAzPuv2NetZEkSZIWmdGzxYsCxHTnSlNsO3CUw7s3t02IqPsUr5IkSZLKxiZK7Dk4PGeAqDpXmmLvwWHGJ0pNqtn81DVERERfRPxQRHTP2L8tIv42It4dET9Rz3NKkiRJrSoIBodO1lR28NgpysOHW1+9h4L/IeVF5R5a3RERvwH8Kff/jzwzIh6XUvp8nc8tSZIktZR8LhgZK9ZU9vSZCfK59ggR9e7O9ATgYyml8Wn7Xg6cAq4H/kdl3011Pq8kSZLUckqTib7eQk1lVyzrqkyp2/rqHSJWAserdyLih4DvA/4spXQkpXQr8PeUA4UkSZK0qCUSA+tX1VR2oH8ll18toTXUO0T0AGen3X8C5f+Jj07b9zXKYUOSJEla1Hq78uzctJbu/KUvu7vzS9ixaW3bLOpX7xBxCnj0tPs/DdwL/N9p+/qA6d2dJEmSpEVr+dIC+7dumDNIdOeXsH/rBpYvra3bUyuod9S5HXhBRPw65RaJpwPvSylNn9PqB4Fv1Pm8kiRJUkvqKeToX93H4d2b2XtwmMFjpzh9ZoIVy7oY6F/Jjg5csXqmPwJ+Hngj5dmY7gNurh6MiIcCm4C31vm8kiRJUsvqKeToKeS4acs6dm25mnwuKoOoU9t0YZqurjVOKR2PiB8GnlXZ9Xcppa9PK7Ia+HPg3fU8ryRJktQOeqcFhjZqeLhI3WNPSunbwJvnOHYUOFrvc0qSJKl+xiZKBHH+2/JEuuDiV2rYuyEilgHrgO9JKR1u1HkkSZJUH+PFSUbHi+w5NMzg0ElGxor09RYYWL+KnW3Yb1+NU+/ZmYiIVRHxPmAE+DTlwdbVYxsj4vMRcUO9zytJkqQrN16cZOjECNe97nb2HTl+fpXlkbEi+44c57rX3s6xEyOMFycXuKZqBXUNERHxCOCTwDOADwKfoDzAuuqTwEOB59TzvJIkSZqf0bNFbjxwlHOlqVmPnytNse3AUUbPFptcM7WierdE/B7lkPBTKaUB4J+nH0wpFYHDlBehkyRp0RubKDE+MUlxcorxiUnGJkoLXSXpImMTJfYcHJ4zQFSdK02x9+Aw476PO169x0T8DOUZme64RJmvA9fV+bySJLUU+5arnQTB4NDJmsoOHjvFri1XN7hGanX1DhEPA75ymTJFYFmdzytJUsuo9i2f2TWk2rf8ljtPsH/rBvpX9xkk1BLyuTg/BuJyTp+ZIJ+LyxfUolbv7kynge+7TJl1wLfrfF5JklqGfcvVbkqTib7eQk1lVyzrqiySpk5W7xDxL8DTI+Lhsx2MiEcBT2bajE2SJC0m9i1XO0okBtavqqnsQP9KwBDR6eodIv4YWAocjIinAL1QXjOicv/vgSngT+p8XkmSWkLWvuUXTmIoLYzerjw7N62lO3/pS8Pu/BJ2bFpLjwvPdby6hoiU0ieBHcAjKU/x+vLKoXsr99cAv5xS+rd6nleSpFZh33K1q+VLC+zfumHOINGdX8L+rRtYvrS2bk9a3OoeI1NK+yPiCPBrwE8CDwLuAe4E3pxS+lK9zylJUquo9i2vJUhU+5Y7tlqtoKeQo391H4d3b2bvwWEGj53i9JkJVizrYqB/JTucVUzTNKQtKqX0FeBlcx2PiIeklP6jEeeWJGkhVfuW7zty/LJl7VuuVtNTyNFTyHHTlnXs2nI1+VxUBlEnuzDpAvUeE3FJEXFVRPwh8LVmnleSpGaxb7kWg96uPD1dOQq5JfR05Xyf6iJ1CxERsToiBiLiaRHxsBnHlkbEbwHDwG/W87ySJLUa+5ZLWuzqcjEfEW+i3LrwN8AHgLsj4tcqx24AvgS8GugB3gisrcd5JUlqRdP7lm/fuIYVy7qA8hiI7RvXcHj3Zheak9TW5t02FREvAH6d8tStX6A8V93VwJsi4gywB8hVtq9OKX1zvueUJKnV2bdc0mJWj0+xrcAEsDml9AmAiLge+GdgH3ASeFpK6XN1OJckSW2ld1pgsOFB0mJRj+5MPwq8vxogAFJKhyh3awrgRgOEJEmStHjUI0RcBXx1lv1fqWw/McsxSZIkSW2qHiFiCTDbijpFgJTSeB3OIUmSJKlF1GtklyvlSJLURGMTJYI4P2A7kS4YfyFJjVSvT5ubI+Lm2Q5ExOQsu1NKyU86SZIyGi9OMjpeZM+hYQaHTjIyVqSvt8DA+lXs3LSW5UsLTh0rqeHqdSEfDS4vSVLHGy9OMnRihBsPHOVcaer8/pGxIvuOHOeWO0+wf+sG16CQ1HDzHhORUlpyJbd6VF6SpE4yerZ4UYCY7lxpim0HjjJ6drahipJUP17MS5LUBsYmSuw5ODxngKg6V5pi78FhxidKTaqZpE5kiJAkqQ0EweDQyZrKDh47hT2HJTWSIUKSpDaQzwUjY7V1Uzp9ZoJ8zhAhqXEMEZIktYHSZKKvt1BT2RXLuihNOvu6pMYxREiS1AYSiYH1q2oqO9C/EpdwktRIhghJktpAb1eenZvW0p2/9J/u7vwSdmxaS48Lz0lqIEOEJEltYvnSAvu3bpgzSHTnl7B/6waWL62t25MkXSlDhCRJbaKnkKN/dR+Hd29m+8Y1rFjWBZTHQGzfuIbDuze70JykprCtU5KkNtJTyNFTyHHTlnXs2nI1+VxUBlEnuzBJaho/bSRJakO90wKDDQ+Sms3uTJIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKxBAhSZIkKZOOChERUYiIl0TE/oj4TERMRESKiO01PPYFEfGpiLgvIu6JiDsi4qnNqLckSZLUSjoqRADLgD8FtgIPB75dy4Mi4vXAAeARwFuBW4AfAf4+In69AfWUJEmSWlanhYgx4GeA700pPRx4++UeEBHXAruArwE/mlJ6WUrpRcA1wGng9RHxyMZVWZIkSWotHRUiUkoTKaUPp5S+leFhv1rZ/kFKaWTac90N/DnQDWyrXy0lSZKk1tZRIeIKPbGy/cgsxz48o4wkSZK06OUXugKtLCKWASuB++ZovfhKZbuuxue7a45Dj76C6kmSJEkLwpaIS7uqsr1njuPV/Q9sfFUkSZKk1tB2LRERcTewOsND3pVS+sUGVacq1VQopWtm219poVhf1xpJkiS1mLGJEkGQzwWlyUQi0dvVdpejog1DBOVZks5mKP/NeZyr2tJw1RzHL9dSIUmS1PHGi5OMjhfZc2iYwaGTjIwV6estMLB+FTs3rWX50gI9hdxCV1MZtF2ISCk9qYnnOhMRp4CVEfGIWcZFPKqy/XKz6iRJktROxouTDJ0Y4cYDRzlXmjq/f2SsyL4jx7nlzhPs37qB/tV9Bok24piIy7utsn3yLMeeMqOMJEmSphk9W7woQEx3rjTFtgNHGT1bbHLNNB+GiMv7y8r2lRHRV91ZWWDuRcA5YP8C1EuSJKmljU2U2HNweM4AUXWuNMXeg8OMT5SaVDPNV9t1Z5qviPhN7p9S9ccr220RsbHy7yMppbdVy6eUPh4R/xu4CfhsRNwKdAHPAVYAv1FZeE6SJEnTBMHg0Mmayg4eO8WuLVc3uEaql44LEZS7JW2ase/ayq3qbdMPppR2RcRngV8HdgBTwBDwxymlDzawrpIkSW0rnwtGxmrrpnT6zAT5XDS4RqqXjgsRKaUbrvBx7wDeUd/aSJIkLV6lyURfb6GmILFiWRelyYRjq9uDYyIkSZLUEInEwPpVNZUd6F9JjUtvqQUYIiRJakNjEyXGJyYpTk4xPjHJmANS1YJ6u/Ls3LSW7vylLzm780vYsWktPS481zZ8pSRJaiMu2qV2s3xpgf1bN7Btjmleu/NL2L91A8uXFhagdrpShghJktqEi3apHfUUcvSv7uPw7s3sPTjM4LFTnD4zwYplXQz0r2SH4bctGSIkSWoTtS7adXj3Zi/I1FJ6Cjl6Cjlu2rKOXVuuJp8LSpMJSHZhalOOiZAkqQ24aJcWg96uPD1dOQq5JfR05QwQbcwQIUlSG8i6aBc4376kxjFESJLUBly0S1IrMURIktQGqot21aK6aJckNYohQpKkNuCiXZJaiSFCkqQ24KJdklqJIUKSpDZRXbRrriDhol2SmsUQIUlSm5i+aNf2jWtYsawLKI+B2L5xDYd3b3ahOUlNYVunJEltxEW7JLUCP20kSWpDvdMCgw0PkprN7kySJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKxBAhSZIkKRNDhCRJkqRMDBGSJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKxBAhSZIkKRNDhCRJkqRMDBGSJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKxBAhSZIkKRNDhCRJkqRMDBGSJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyyS90BSRJkq7E2ESJIMjngtJkIpHo7fLSRmoGf9MkSVJbGS9OMjpeZM+hYQaHTjIyVqSvt8DA+lXs3LSW5UsL9BRyC11NaVEzREiSpLYxXpxk6MQINx44yrnS1Pn9I2NF9h05zi13nmD/1g30r+4zSEgN5JgISZLUNkbPFi8KENOdK02x7cBRRs8Wm1wzqbMYIiRJUlsYmyix5+DwnAGi6lxpir0HhxmfKDWpZlLnMURIkqS2EASDQydrKjt47BQQja2Q1MEMEZIkqS3kc8HIWG3dlE6fmSCfM0RIjWKIkCRJbaE0mejrLdRUdsWyLkqTqcE1kjqXIUKSJLWFRGJg/aqayg70rwQMEVKjGCIkSVJb6O3Ks3PTWrrzl7586c4vYcemtfRc4cJzYxMlxicmKU5OMT4xyZgDtKWLuE6EJElqG8uXFti/dQPb5pjmtTu/hP1bN7B8aW3dnqZzETupdoYISZLUNnoKOfpX93F492b2Hhxm8NgpTp+ZYMWyLgb6V7LjCi/2XcROysYQIUmS2kpPIUdPIcdNW9axa8vV5HNRGUSdrrgLU62L2B3evdkQIeGYCEmS1KZ6u/L0dOUo5JbQ05Wb1xgIF7GTsjFESJKkjuYidlJ2hghJktTRXMROys4Q0aGcvk6SpDIXsZOyc2B1h3H6OkmSLlRdxG7fkeOXLesidlKZLREdpDp93XWvu519R46fb7qtTl933Wtv59iJEcaLkwtcU0mSmqdZi9hJi4khooPUOn3d6Nna+oVKkrRYVBexmytIzGcRO2kx6qgQERGPiojdEXFbRHwjIiYi4t8j4m8jYvNlHvuCiPhURNwXEfdExB0R8dRm1X2+nL5OkqS5TV/EbvvGNaxY1gWUx0Bs37iGw7s3u9CcNE2ntcf9L+A5wOeBDwGngauBpwNPj4iXpJTeNPNBEfF6YBdwEngr0AU8F/j7iPiNlNKbm1T/K5Z1+rpdW65ucI0kSWotjVjETlqsOu034iPAa1NKx6bvjIhNwD8DfxwRf5NS+ta0Y9dSDhBfAzaklEYq+/8YuAt4fUR8MKV0d5N+hivi9HWSJNWmd1pgsOFBml1HdWdKKR2YGSAq+w8Cd1BuYbh2xuFfrWz/oBogKo+5G/hzoBvY1oj61pPT10mSJKleOipEXEb1a/qZgwGeWNl+ZJbHfHhGmZZVnb6uFk5fJ0mSpEvptO5Ms4qI1cCTgDHg0LT9y4CVwH3TuzhN85XKdl2N57lrjkOPrr22V6Y6fd0td5645OBqp6+TJEnS5XR8S0REdAPvotwt6ebpXZaAqyrbe+Z4eHX/AxtTu/py+jpJkiTVQ9t93RwRdwOrMzzkXSmlX5zjuXLA/wGeALwXeP0VVqumvj8ppWvmqMddwPorPHfNpk9ft/fgMIPHTnH6zAQrlnUx0L+SHa5YLUmSpBq0XYigPEvS2QzlvznbzkqAuAV4NvDXwC+mlGaGgWpLw1XM7nItFS3H6eskSZI0X2131ZhSetJ8nyMi8sC7KQeIdwPPTylNznKuMxFxClgZEY+YZVzEoyrbL8+3Ts3m9HWSJEm6Uh03JiIiuoBbKQeIdwK/NFuAmOa2yvbJsxx7yowykiRJ0qLXUSGiMoj6/cAzgH3AtpTS3FMVlf1lZfvKiOib9lyPBF4EnAP217+2kiRJUmtqu+5M8/SXwM8A3wVOAb8bcdHKzHeklO6o3kkpfTwi/jdwE/DZiLiV8qJ0zwFWAL/R6qtVS5IkSfXUaSFiTWX7YOB3L1Hujul3Ukq7IuKzwK8DO4ApYAj445TSBxtQT0mSJKlldVSISCndMI/HvgN4R/1qI0mSJLWnjhoTIUmSJGn+DBGSJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKxBAhSZIkKRNDhCRJkqRMDBGSJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJyiS/0BXQwhibKBEE+VxQmkwkEr1dvh0kSZJ0eV41dpjx4iSj40X2HBpmcOgkI2NF+noLDKxfxc5Na1m+tEBPIbfQ1ZQkSVILM0R0kPHiJEMnRrjxwFHOlabO7x8ZK7LvyHFuufME+7duoH91n0FCkiRJc3JMRAcZPVu8KEBMd640xbYDRxk9W2xyzSRJktRODBEdYmyixJ6Dw3MGiKpzpSn2HhxmfKLUpJpJkiSp3RgiOkQQDA6drKns4LFTQDS2QpIkSWpbhogOkc8FI2O1dVM6fWaCfM4QIUmSpNkZIjpEaTLR11uoqeyKZV2UJlODayRJkqR2ZYjoEInEwPpVNZUd6F8JGCIkSZI0O0NEh+jtyrNz01q685d+ybvzS9ixaS09LjwnSZKkORgiOsjypQX2b90wZ5Dozi9h/9YNLF9aW7cnSZIkdSZDRAfpKeToX93H4d2b2b5xDSuWdQHlMRDbN67h8O7NLjQnSZKky7LPSofpKeToKeS4acs6dm25mnwuKoOok12YJEmSVBOvGjtU77TAYMODJEmSsrA7kyRJkqRMDBGSJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKJFJKC12HjhcR/9nT07PiMY95zEJXRZIkSYvUF77wBcbHx0+nlB403+cyRLSAiDgOPAC4u8mnfnRl+8Umn1e18zVqfb5Grc/XqPX5GrU+X6P2cLnX6ZHAvSmlNfM9kSGig0XEXQAppWsWui6ana9R6/M1an2+Rq3P16j1+Rq1h2a+To6JkCRJkpSJIUKSJElSJoYISZIkSZkYIiRJkiRlYoiQJEmSlImzM0mSJEnKxJYISZIkSZkYIiRJkiRlYoiQJEmSlIkhQpIkSVImhghJkiRJmRgiJEmSJGViiJAkSZKUiSFikYqIZ0XEn0XE4Yi4NyJSRNxymcdcGxEfiojTETEWEZ+NiJdGRK5Z9e4kWV6jiHhUROyOiNsi4hsRMRER/x4RfxsRm5td905xJb9HMx6/r/KYFBE/2Mi6dqor/KyLiHhBRNxR+bwbj4jjEfHXEbGuWXXvFFlfo4jojogXRcSnIuK7EXFfRHwhIt4UEaubWfdOEBEPiojtEfH+iPhq5ffhnog4EhG/HBGzXit6zdA8WV+jZl0z5Ov1RGo5vw38GHAfcBJ49KUKR8QzgPcBZ4H3AqeBpwFvAJ4APLuRle1QWV6j/wU8B/g88CHKr8/VwNOBp0fES1JKb2psdTtSpt+j6SLiacCNlcd+T0NqJ8j+WbcU+BvgqcCXgHcDo8D3AtcB64AvN7C+najm1ygi8sDHKP/d+SLwV8A5YAPwG8DzI+LalNLnG13pDvJs4C3At4Dbga8DDwMGgLcBT4mIZ6dpqxN7zdB0WV+j5lwzpJS8LcIbsBl4FBDADUACbpmj7AOA71D+oH7ctP1LgY9XHvvchf6ZFtst42u0FeifZf8mYKLy2j1ioX+mxXbL8hrNeNxDgG8D7wHuqDzuBxf651mMt6yvEfDnlTJ/CCyZ5XhhoX+mxXbL+Fn37Mrxj858fYBXVY69faF/psV0A55IOQDM/P9+OOWL1QT8/LT9XjO0/mvUlGsGuzMtUiml21NKX0mVd81lPIvyRc97UkqfnvYcZyl/gwTwwgZUs6NleY1SSgdSSsdm2X+Q8kVqF3Bt/WvZ2TL+Hk23t7J9Ub3rpAtleY0i4geAXwWOAq9MKU3N8nzFBlSzo2X8PVpb2f7DLK/P31a2D6lf7ZRSui2l9Pcz/79TSt8G/rJy94Zph7xmaLKsr1GzrhnsziQoJ1yAj8xy7BAwBlwbEd0ppXPNq5ZqVL3oKS1oLQRARGwFngn8XErpPyNiYSuk6Z5HeSzgO4AHVLqcfR/wn8BtKaWvLmTlBMC/VbZPiYg3zrhoempl+9Em16mTzfb3xWuG1pL1GqBu1wyGCEG5nxzM0g84pVSKiOPAD1P+hugLzayYLq0yyPBJlD+0Dy1wdTpe5fV4I+WuGh9Y4OroYhsq26uArwEPmnYsRcRbgBenlCabXjNV/QMwSLmv9+ci4qOUu19cA2wE/gx488JVr3NUxqc8v3J3emDwmqFFXOI1mqt8Xa8Z7M4kKP9BBbhnjuPV/Q9sfFVUq4joBt4FdAM3p5RGFrhKHa0yO8Y7KA8effECV0eze2hl+/vAp4EfAZZT/qP6NeDXgN9ZmKoJoNLl6VnAzZQvVl8MvJzyuIpDwLsNeU3zGuCxwIdSSv84bb/XDK1jrtfoIo24ZjBEqBbV/hhZ+4WrQSpT6P0fyrNgvBd4/cLWSMDLKA9a+xUDXcuqTj35Lcrdzf41pXRfSuk2yheuU8BNEdG1YDXscJXZs95LOTi8CHgE5YvWnwFWA4cqMwOpgSLixcAuyjNk/VLWh1e2XjM0UJbXqFHXDIYIwf3fGlw1x/EHzCinBVT5MLiF8iwmfw384hUM/FUdRcSjgD8A9qeUPrTQ9dGcquHuIyml8ekHUkr/FzhOuWXiMc2umM77Tcqfba9MKe1JKX07pXRvSunDlINegXKXQTVIRLyI8v/x54HNKaXTM4p4zbDAaniNppdt2DWDIUJQnisdyvOjX6DS324N5QE4w82slC5WeT3+Cngu5fntfyGl5IDqhffDlJuIt01bXC5FRKLcOgHwlcq+Zy5YLVX9rPuvOY5XQ0ZP46uiOVQHT98+80Al6J0GVkfEg2Ye1/xFxEspjzn5V8oXp9+epZjXDAuoxteoWrah1wwOrBbAbcD/BJ5M+c023fVAL3DIWRYWVqWLxV8DzwDeCWybbYpKLYi7gX1zHPtZynN5/w1wb6WsFsbHKC9Y9tiZByr9hR9VuXt3E+ukC3VXthdN41p5jarfck80rUYdIiJ2U+5j/xngv6eUvjtHUa8ZFkiG16gp1wy2RAjgVuC7wHMj4nHVnZW+qa+u3H3LQlRMZZU/nu+n/GGwDwNES0kpfSaltH22G/d/a/eKyr7PLGBVO92HKX87+tMR8d9nHPsdyt0zDl7qmz013OHK9hWVz73pbqb85efRlNJoU2u1yEXE71C+OL0LeNKlLk7xmmFBZHmNmnXNEHalXpwqXSaeWbn7cOCnKf/xrH5Afzel9PIZ5W+lvIT9eyg3GT+d8uwYtwL/w3739ZXlNYqI/ZRXoPwu8BfMPmDtjpTSHQ2rcAfK+ns0x3PcQblL06Nch6D+ruCzbiPwT5QXW3o/cILy1K/XA/8BbEwpXTR1pa5cxs+6lcCdwCrKLUIfAcYpDwj9b5V/Pyml9Inm1H7xi4gXAAeAScpT6M42luHulNKBaY95Jl4zNE3W16hp1wyzLWPtrf1vlL+xSZe43T3LY54AfIhyv+Bx4HOUZ5zJLfTPsxhvWV4jyitMXqpsojxl24L/XIvpdiW/R7M8R/W1+8GF/nkW4+0KP+t+iPIMJd+h3C3mG8AeYNVC/zyL8Zb1NaLclen1lNcYOFt5jU4A+4FHL/TPs9huNbw+ifIF58zHec3Qoq9Rs64ZbImQJEmSlIljIiRJkiRlYoiQJEmSlIkhQpIkSVImhghJkiRJmRgiJEmSJGViiJAkSZKUiSFCkiRJUiaGCEmSJEmZGCIkSZIkZWKIkCRJkpSJIUKSJElSJoYISVJdRMQNEZEi4uaFrst8RMQdEZEWuh6S1MoMEZLUwSoX/Ze73bDQ9ayniDhQ+bkeudB1kaR2lV/oCkiSWsKrLnHs7mZVokU8H+hd6EpIUiszREiSSCndvNB1aBUppa8vdB0kqdXZnUmSlElEPCwi9kXEv0fEeER8JiJecInyd0fE3XMcu3muLlMR8eiIeHvl8eci4jsRcTgiXjij3DMj4paI+HJEnImI+yLiroh4cUQsmVE2AdW6Hp/WZevuaWVmHRMREUsi4lcj4mjlHGcq/37hzPNUz1V5rgdHxN6I+Fbl5/i3iNg21/+XJLUDWyIkSTWLiAcBHwfWAkcqt0cAfwn8Ux3P87PA3wDdwEeAvwIeCPwY8P8Db5lW/DXAFPBJ4BRwFfBE4I3ABuCXppV9FfDMyvO8Efivyv7/4vL+D/ALwDeAtwEJ+DngL4CNwP+c5TEPBP4FmABuBZYCzwLeHhFTKaV31HBeSWo5hghJEpeYUelsSuk10+7/EeUA8acppZdNe/ybgU/UqS4PBt5N+W/UE1NKB2ccXzXjIT+bUvrajDJLgP3A8yPizSmlT0K521ZlQPWPVX6Gu2us0/MoB4hjwPUppfsq+38bOAj8QkT8Q0rp3TMe+mPAPmBnSmmy8pg3AJ8FdgOGCEltyRAhSQL4vTn230P5m34iokD52/ZR4ObphVJKn46Id3F/V6H5eAHwAOBNMwNE5VwnZ9z/2ixlpiLijZQHSf805VaK+bixsv3NaoConOdMROwGPgpspxx+phsDbqoGiMpjPh8R/wJcHxHLU0qj86ybJDWdYyIkSaSUYo7bA6cVezTlWYs+k1K6Z5anuaNO1fnJyvbDtRSOiAdFxGsi4rOVsQqpMqbhrkqRlXWo03rKXabumOXYQWAS6J/l2FdSSvfOsv8ble0D61A3SWo6WyIkSbW6qrL99zmOf7tO53lgZXvqcgUj4oHAUWAN8CngncBpoFR5npdQHlcxX1cBp1NKEzMPpJRKEfFd4KGzPO6/5ni+UmWbq0PdJKnpDBGSpFpVWx8eNsfxh8+xfwromuPYA2fZ91+V7Urgc5ep03bKAeJVM6epjYjHUw4R9XAPsCIiCiml4ozz5IEHA7O1OEjSomR3JklSrb5IuY//j0fEVbMcv2GOx40AD6uMqZjpcbPsu7OyfUoNdfrByvZ9sxzbNMdjquMTsrQCHKP8N/P6WY5dX3muoQzPJ0ltzRAhSapJ5Rv4dwHLmTGwOiIex+xTnEK5m1EeuGBthIjYCjxhlvLvoPyt/gsj4qKL9hmzM91d2d4wo0w/8Ftz1Oc/K9vvn+P4bN5e2f5RRJxfzbry7+rsVfsyPJ8ktTW7M0mSLjXFK8AHUkqfqfz7FcCTgJdWgkN1nYjnAB8Cnj7L4/+McoB4S0Q8ifKg4h8DrgU+CDx1euGU0ncj4hcor6twe0R8mPKUqA8AfhT4PspdmKA8BuL/A/40IjYDXwEeVXnOwUq9ZvpY5TFvjYhbgfuA/0opvXmu/4CU0rsj4hnA/wD+LSI+QHmdiGdW6vLXKaV3zfV4SVpsDBGSJJh7ilcof9v/GTh/gf8E4A+Bp1HujvQl4IWVcheFiMqUpj817TEl4DDweGCAGSGi8ph/qISU3ZRDyxbK3aK+SHmtimq5b0bEdZRbAzZSns71i8CvUZ529aIQkVL6x4jYBfwK8DLK4zVOAHOGiIrnUZ6J6UZgZ2XfF4A/4cLF7yRp0YuU0kLXQZIkSVIbcUyEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTAwRkiRJkjIxREiSJEnKxBAhSZIkKRNDhCRJkqRMDBGSJEmSMjFESJIkScrEECFJkiQpE0OEJEmSpEwMEZIkSZIyMURIkiRJysQQIUmSJCkTQ4QkSZKkTP4f5jusp4dsvngAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 261, "width": 392 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "resid = y_pred - df_income['Income'].values ### calculate residuals\n", "sns.scatterplot(x = df_income['Education'], y = resid)\n", "plt.axhline(y = 0, linestyle = \"dotted\")\n", "plt.ylabel(\"Residuals\")" ] }, { "cell_type": "markdown", "id": "a071e650", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Check-in\n", "\n", "Build a linear model predicting `Income` from `Seniority`. Then, evaluate this model using one of the visual comparison methods discussed above:\n", "\n", "1. Plotting $\\hat{Y}$ as the regression line over `Income` and `Education`. \n", "2. Directly plotting $\\hat{Y}$ vs. $Y$. \n", "3. Plotting the **residuals** of our model." ] }, { "cell_type": "code", "execution_count": 12, "id": "534ea018", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "### Your code here" ] }, { "cell_type": "markdown", "id": "91e6b5a4", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Solution (1)" ] }, { "cell_type": "code", "execution_count": 13, "id": "3878326f", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwkAAAILCAYAAACjJNAzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAABhtElEQVR4nO3deXhc1X34//fRzGizZVtewBsYi2CzGWITsxqMITgEQhYnaUnTJIYQSJomTaGp2yxt0qRL8m2aNE1+DaTUbkrWUpNmITvghQAhmIQ1bDYmNjZgLGzZ2mZG5/fHjIRGiy3ZI400er+eR8+17jn3ztH4anQ/95zPOSHGiCRJkiR1qih1AyRJkiSNLAYJkiRJkgoYJEiSJEkqYJAgSZIkqYBBgiRJkqQCBgmSJEmSChgkSJIkSSpgkCBJkiSpgEGCJEmSpAIGCZIkSZIKGCRIkiRJKmCQIEmSJKlAstQNGItCCFuACcDTJW6KJEmSytcxwN4Y49zBHmiQUBoTampqJp9wwgmTS90QSZIkladHH32UlpaWQzrWIKE0nj7hhBMm33fffaVuhyRJksrUaaedxqZNm54+lGPNSZAkSZJUwCBBkiRJUgGDBEmSJEkFDBIkSZIkFTBIkCRJklTAIEGSJElSAYMESZIkSQUMEiRJkiQVMEiQJEmSVMAgQZIkSVIBgwRJkiRJBUZdkBBCeEsI4d9CCBtCCHtDCDGEcNNBjjk7hHBrCGF3CKE5hPBACOFDIYTEAY55VwjhVyGEfSGEPSGEO0IIryv+TyRJGg2a2zO0tGdJZztoac/S3J4pdZMkacgkS92AQ/Ax4FRgH7ANOP5AlUMIbwD+F2gFvg3sBi4DPg+cA7y1j2P+Gbguf/6vApXA5cD3QwgfiDF+qVg/jCRpZGtJZ2lqSXP9+s2s3bSNxuY09bUpViyazTVLG6irTlGT6veZkySNSqOuJwH4c2AeMAF434EqhhAmkLvJzwLnxxjfHWP8MPBK4C7gLSGEy3sccza5AOEp4JQY45/HGN8PnEYuwPjnEMIxRf2JJEkjUks6y6atjZz72du5ceMWGpvTADQ2p7lx4xbO/czt3L+1kZZ0tsQtlaTiGnVBQozx9hjjEzHGOIDqbwGmAd+KMf662zlayfVIQO9A47357d/HGBu7HfM08GWgCrjiEJsvSRpFmlrTXLnmXtoyHX2Wt2U6uGLNvTS1poe5ZZI0tEZdkDBIF+S3P+6jbD3QDJwdQqga4DE/6lFHklSmmtszXL9uc78BQqe2TAc3rNtMizkKkspIuQcJ8/Pbx3sWxBgzwBZyeRkNACGEccAsYF+McUcf53siv503kBcPIdzX1xcHyaOQJJVeILB207YB1V17/3YgDG2DJGkYjcbE5cGYmN/u6ae8c/+kQ6wvSSpTyUToykE4mN3720kmDBIk9dbcniEQSCYCmWwkEqmtHPm34CO/hUOr8xN9IPkN3Q2ofozxtD5fNNebsGiQrylJGkaZbKS+NjWgQGHyuEoy2YiTHEnqNNpnRiv34UadT/4n9lM+oUe9g9U/WE+DJKlMRCIrFs0eUN0VC2cx+OdNkspVOcyMVu5BwmP5ba8cghBCEpgLZIDNADHG/cB2YHwIYUYf5zsuv+2V4yBJKi+1lUmuWdpAVfLAfyqrkhVcvbSBmlEwfEDS8CiHmdHKPUi4Lb+9uI+y84Ba4JcxxrYBHvPaHnUkSWWsrjrF6pWL+w0UqpIVrF65mLrq1DC3TNJIVS4zo5V7kHAzsAu4PITwqs6dIYRq4NP5b/+9xzFfyW8/GkKo73bMMcD7gTZg9VA1WJI0ctSkEiycU8+GVcu4aslcJo+rBHI5CFctmcuGVctYOKd+RI8rljS8ymVmtFHXNxpCeCPwxvy30/Pbs0IIa/L/3hVj/AuAGOPeEMJ7yAULd4QQvkVu1eTXk5se9Wbg293PH2P8ZQjhX4BrgQdCCDcDlcAfApOBD+QXVpMkjQE1qQQ1qQTXLp/Hdcvnd81QAtEhRpJ6KZeZ0Ubjp9srgXf12NeQ/wLYCvxFZ0GM8bshhKXAR4E3A9XAk+SCgC/2tXJzjPG6EMIDwJ8CVwMdwCbg/8UYf1DUn0aSNCp0n7LQjgNJ/SmXmdFGXZAQY/wE8IlBHnMncMkgj/kv4L8Gc4wkSZLGts6Z0W7cuOWgdUfyzGjlnpMgSZIkDZtymRnNIEGSJEkqonKYGc0gQZIkSSqicpgZbWT2b0iSJBVZc3uGQOiaoSoSCxLSpWIa7TOjjfwWSpIkHYaWdJamljTXr9/M2k3baGxOU1+bYsWi2VyztIG66tSIfqKr0W20zoxmkCBJkspWSzrLpq2NXLnm3oIVcBub09y4cQs33b2V1SsXj/ihH9JwMydBkiSVrabWdK8Aobu2TAdXrLmXptaBLX4ljRUGCZIkqSw1t2e4ft3mfgOETm2ZDm5Yt5mW9swwtUwa+QwSJElSWQoE1m7aNqC6a+/fDoShbZA0ihgkSJKkspRMBBqbBzaMaPf+dpIJgwSpk0GCJEkqS5lspL52YItVTR5XmZ+eUhIYJEiSpDIViaxYNHtAdVcsnAUYJEidDBIkSVJZqq1Mcs3SBqqSB77dqUpWcPXShlGxwJU0XAwSJElS2aqrTrF65eJ+A4WqZAWrVy6mrnpgw5KkscIgQZIkla2aVIKFc+rZsGoZVy2Zy+RxlUAuB+GqJXPZsGqZC6lJfbBfTZIklbWaVIKaVIJrl8/juuXzSSZCPkk5OsRI6oe/GZIkaUyo7RYQ2HEgHZjDjSRJkiQVMEiQJEmSVMAgQZIkSVIBgwRJkiRJBUxcliSpxJrbMwRC16w7kViQZCtJw81PIEmSSqQlnaWpJc316zezdtM2GpvT1NemWLFoNtcsbaCuOuX8/ZJKwiBBkqQSaEln2bS1kSvX3EtbpqNrf2Nzmhs3buGmu7eyeuViF/qSVBLmJEiSVAJNreleAUJ3bZkOrlhzL02t6WFumSQZJEiSNOya2zNcv25zvwFCp7ZMBzes20xLe2aYWiZJOQYJkiQNs0Bg7aZtA6q79v7tQBjaBklSDwYJkiQNs2Qi0Ng8sGFEu/e3k0wYJEgaXgYJkiQNs0w2Ul+bGlDdyeMqyWTjELdIkgoZJEiSNMwikRWLZg+o7oqFswCDBI0eze0ZWtqzpLMdtLRnaTanZlRyClRJkoZZbWWSa5Y2cNPdWw+YvFyVrODqpQ3UuLCaRgHX/Sgv9iRIklQCddUpVq9cTFWy7z/FVckKVq9cTF31wIYlSaXUue7HuZ+9nRs3bunKuelc9+Pcz9zO/VsbaUlnS9xSDZRBgiRJJVCTSrBwTj0bVi3jqiVzmTyuEsjlIFy1ZC4bVi1zITWNGq77UX7sv5SkUa65PUMgkEwEMtlIJFLr8JRRoSaVoCaV4Nrl87hu+fyu/0OIDjHSqDHYdT+uWz7P63sU8H9IkkYpx/+Wj+5Bnf9lGm0Gu+7HdcvnD3GLVAwGCZI0CnWO/+3Zvd85/vemu7eyeuVih6tIGnKu+1GezEmQpFHI8b+SRgrX/ShPBgmSNMoMdvxvi3OUSxpCrvtRngwSJGmUGez4Xzj0rn0XRZJ0MJ3rfvQ3nW8n1/0YXfxfkqRRZjjG/5oULWkwOtf9uKKfYZCu+zH62JMgSaPMUI//dVEkSYPluh/lx54ESRplOsf/3rhxy0HrHsr434EmRW9Ytcw/+JK6uO5HebEnQZJGmaEc/2tStKTDVVuZpKYyQSpRQU1lwgBhlDJIkKRRqHP8b3+BwqGO/x3OpGipnJjkr3JjaCdJo1D38b83rNvM2vu3s3t/O5PHVbJi4SyuPsTkYhdFkgbHJH+VK4MESRqlhmL8b2dS9EAChc6kaO9/NFa58rnKmcONJGmUK+b4XxdFkgbOlc9VzgwSJEldXBRJGhiT/FXuDBIkSQWGKilaKicm+avcGSRIkgq4KJJ0cCb5q9zZTyxJ6sVFkaQDM8lf5c6eBElSv1wUSeqbSf4qdwYJkiRJg2SSv8qdQYIkSdIhMMlf5cwgQZIk6RCY5K9yZt+XJEnSITLJX+XKngRJkqTDZJK/OnV0RH61ZTef+N7DPL+3tdTNOWRewZIkSVKRvP8bm/jRQzsBaJg2jneedUxpG3SI7EmQJEmSBinbEXlxX1uv/WcfO6Xr3z98YMdwNqmo7EmQJEmSBmhbYzM3rN/Mjx7ayckzJ7D6itMLyl9z8nS+eNuTXHTikbxuwYwStfLwGSRIkiRJAxQjfO2urQBsfHIXe1rSTKx5eZrbI+qqueevL6SiIpSqiUXhcCNJkiSpm2xH5JdP7eJv/+8hWtqzBWVHTa5lwayJAEysSfHUC/t6HT/aAwSwJ0GSJEkq8Lav3s2vtuwG4MyGKby2x7ChD78mN93tGXOnkCiDgKAv9iRIkiRpTMpkO9jTnO61/8y5k7v+/cMHeycfnzdvGmcfO7VsAwQwSJAkSdIY89QL+/jILQ9yxj/8gn+49dFe5ZecMoOp46t4x5lzeNfZxwx/A0cAhxtJkiRpTHmpOc037nkGgJ88spNPZ08mlXj52fn8I+u45yMXlnVPwcHYkyBJkqSyk8l2sPGJXXz6B4/Q0RELyhYeNYkZE6sBqExUsPXF5oLyEMKYDhDAngRJkiSVmRgjF//rBp58Pjfz0GtOns7iY17OM6ioCPztZScyeVwVr5pTXxazERWbPQmSJEkatdLZDva1ZQr2hRBYfEx91/d9rXx88ckzOH3uZAOEfhgkSJIkadR5+Nk9rLr5ARb//c/5yh1P9Sq/ZMEMpk+o5opzjuFNC2eVoIWjm8ONJEmSNOpsa2zh27/+PQC3PriD65bPI4SXewXOOXYqv/yrC+wpOET2JEiSJGlEas90cPtjz/MvP3u8V9nSedMYV5kAoCWdZde+9oLyiopggHAY7EmQJEnSiJPOdrDkM7fxfFMbAG9eNIs5U8Z1lVenEnzqjSczZ8o4Fh41yYCgyOxJkCRJUkm1ZzpoTWcL9qUSFZwye2LX932tfLxi0WxOc3aiIWGQIEmSpJLY9Ewj133nt7zq0z/j2/f+vlf5JQtmMGtSDVctmcv5844oQQvHLocbSZIkqSQeeXYv/7tpG5CbpvRdZx9TUP76U2fypoWzChKSNTzsSZAkSdKQactk+cWjz/HV9Zt7lV188nQ6Rwrt2NvSa8hRMlFhgFAi9iRIkiRpSOxpTrPks7fR1JohlQj8wauOYmJtqqt86vgqPvmGkzll1kROmT3RgGAEsSdBkiRJh601naU901Gwb2JtioapuRmJ0tnITx/Z2eu4d5w5h1OPmmSAMMLYkyBJkqRDdtdTL/KdX/+enz3yHJ958ylcesqMgvJLT5nB7uZ2Llkwg4VH15eolRosgwRJkiQdsrs3v8gt928Hcisf9wwSVp49l/ec22BPwSgzZoYbhRAuDSH8NISwLYTQEkLYHEL4nxDCWf3UPzuEcGsIYXcIoTmE8EAI4UMhhMRwt12SJKmUWtNZfvzQTr75q2d6lXUPCp56YR8dHbGgvDJp8vFoNCZ6EkIInwH+EngR+C6wC3gF8AbgzSGEd8YYb+pW/w3A/wKtwLeB3cBlwOeBc4C3Dmf7JZWH5vYMgUAyEchkI5FIbeWY+BiWNIo982Izr/3X9exvzzKxJsWbF82mMvnyc+Z5R9bxkUuO5+xjp3LSzAkGBGWi7P86hRCmA38BPAecEmN8vlvZMuA24O+Am/L7JgBfBbLA+THGX+f3fzxf9y0hhMtjjN8a1h9E0qjVks7S1JLm+vWbWbtpG43NaeprU6xYNJtrljZQV52iJmUnpaTSa01nqUxUFKxgfNTkGibVVrK/vYU9LWnufGoXy+YXLmx29XnHDndTNcTGwnCjOeR+znu6BwgAMcbbgSZgWrfdb8l//63OACFftxX4WP7b9w1piyWVjZZ0lk1bGzn3s7dz48YtNDanAWhsTnPjxi2c+5nbuX9rIy095gaXpOF0+2PP86ff2MSiT/2MX29tLCgLIXDJgunMnTqO9y87lmOnji9RKzWcxkKQ8ATQDpweQpjavSCEcB5QB/y82+4L8tsf93Gu9UAzcHYIoWoI2iqpzDS1prlyzb209ZgWsFNbpoMr1txLU2t6mFsmSS/76cPP8YMHdtDcnuXWB3f0Kv+L18zntuuW8uHXHM/RU2pL0EINt7IPEmKMu4FVwJHAIyGEG0II/xhC+A7wU+BnwDXdDpmf3z7ex7kywBZyw7QaDvbaIYT7+voCjj+8n0rSaNDcnuH6dZv7DRA6tWU6uGHdZlraM8PUMkljUUs+APjeb5/tVXbpgpeTjx/b2dSrvCqZMNdgjCn7nASAGOMXQghPA/8JvKdb0ZPAmh7DkCbmt3v6OV3n/knFbONQM2FSGn6BwNpN2wZUd+3927lu+fyDV5SkQ/DAtpf4w+vvpiWdZc6UWi47ZUbBTf+ZDZO59qJ5LD/pSOYfWVfClpaf0XoPNvJbWAQhhL8E/gH4IvAlYCe5p/n/CHw9hPDKGONfDvR0+W08YC0gxnhaP+25D1g0wNc7LCZMSqWTTISuHISD2b2/nWTCp3SSDl9rOkt1j7/t846sI5FPRt76YjMPP7uXk2dN7CpPJir44IXHDWs7y91ovwcr++FGIYTzgc8A34sxXhtj3BxjbI4xbgLeBGwHrgshdA4f6uwpmNjrZDkTetQbsUyYlEork43U16YGVHfyuEoy2YM+e5Ckfv3k4Z38ydfv45V/91O27NpfUFadSnDhCUfwiiPG88ELj2PK+MoStXJsKId7sLIPEoDX5be39yyIMTYDvyL3PizM734sv53Xs34IIQnMBTLA5qK3tMhMmJRKKxJZsWj2gOquWDiLAXRQSlK/br5vG7c+uJPWdEefycefefMp/PzapVx70TxmTKwpQQvHjnK4BxsLQULnLETT+inv3N+e396W317cR93zgFrglzHGtuI0b2iYMCmVXm1lkmuWNlCVPPBHbVWygquXNlAzCsaoSiqt/W0ZvvfbZ7n9d8/3KuuefPzIs3t7lfccgqShUS73YGMhSNiQ314dQpjVvSCE8FpyKyi3Ar/M776Z3IrMl4cQXtWtbjXw6fy3/z6kLS6CwSZMvpxqIamY6qpTrF65uN9AoSpZweqVi6mrHtiwJElj17rHX2DRp37GB795P1++/cle5ReecAQfevVx/OzPz+PLbx+W1Ef1oVzuwcbCY6ubya2D8Grg0RDCLeQSl08gNxQpAH8VY3wRIMa4N4Twnvxxd4QQvgXsBl5PbnrUm4FvD/tPMUgmTEojQ00qwcI59WxYtYwb1m1m7f3b2b2/ncnjKlmxcBZXj4LkNUnDr6/k45NmTiCdzT2d/vXWRnbuaWX6xOqu8rrqFB96da/R0hpm5XIPVvZBQoyxI4RwCfB+4HJyycq15G78bwW+GGP8aY9jvhtCWAp8FHgzUE1uutRr8/VH/MDhzoTJgVyknQmT3qNIQ6MmlaAmleDa5fO4bvn8rmnwIDrESFKXGCPf++2z/OCBHfzyyV3c+VcXMKn25QTjqeOrOLNhCrv3t3PJghmkRujN5VhXLvdgY+KvU4wxDXwh/zXQY+4ELhmiJg25zoTJGzduOWhdEyal4dF9XuyR+AdBUmmFEFh959P85vcvAblVkP9g8VEFdf7jXa8aFXPsj2Xlcg82FnISxiQTJiVJGpn2tqa55f5t3Pv07l5l3ZOPH9j+Uq9yA4SRr1zuwUZmq1QUnQmTV/QzBZcJk5IkDa//+812Pvw/D9Ce7eC1J09n8TGTC8ovPWUGbZkslyyYQcO08SVqpQ5XOdyDGSSUMRMmJUkqnfZMB5U9niafNHMC7fnk49sfe57m9kxB78DMSTX86QWufDzalcM9mEFCmTNhUpKk4ZPJdvB/v3mWHz64gwe27eGXf3VBQaDwiiPqmHfkeFKJCi5ZMINMx8gcj67DN9rvwUZ+C1UUJkxKkjT0EhWBz//8cbY1tgBw55O7WHb8EQV11v7JOYyv8hZsrBit92AmLkuSJA3SnuY0//Pr3/da2TiEwCXdko/vz89U1J0BgkYDr1JJkqRB+NpdT/OpHzxCOht551lz+Ls3nFxQvmLRLOprK7lkwXTmTBlXolZKh8eeBEmSpH50rnDc3SuOGE86m8sl+NFDO8n2yCs4fvoE3nf+sQYIGtXsSZAkSeqmNZ3le/nk422Nzfz82qWE8PLqxmfMncLU8VXMnFTNJQtmkM52kKgYRYPNpQEwSJAkSeomBPjUDx6hqS0DwMPP7uXkWRO7yhMVgdv+YikTRvAc99LhcriRJEkakxr3t/OtXz3D73c3F+yvSiZ49YlHdn3/6z5WRjZAULmzJ0GSNOya2zMEQte84ZFYME3gSD23yse//vwJvnjbE2Q7ItddNI8PXFi4gNnbTj+aE2dM4LULpjO7vrZErZRKx09NSdKwaUlnaWpJc/36zazdtI3G5jT1tSlWLJrNNYe5AulQnlujWybbQTJROHjimKm1XQnHP3xwR68g4fS5kzl97uRha6M00hgkSJKGRUs6y6atjVy55l7aMi/PGNPYnObGjVu46e6trF65mIVz6gd9Mz+U59botK8tk08+fpZ0JvKd955VUH7hCUdSnargxBkTuGTBDDo6IhUVoZ+zSWOPQYIkaVg0taZ73cR315bp4Io197Jh1bJB38gP5bk1OrVnOvj4/z3U1Vvw7EstzJxU01U+virJPX/9aibWmlsg9cXEZUnSkGtuz3D9us393sR3ast0cMO6zbS0Z0bEuTXy7drXxk13b6Vxf3vB/snjKjmrYUrX9/f2kXxsgCD1z54ESdKQCwTWbto2oLpr79/Odcvnj4hza2T75Pcf5r9++TQdEZIVgctPP7qg/IpzjuGC44/gtQumM2NiTT9nkdQXgwRJ0pBLJgKNzekB1d29v51kYuBjw4fy3Bo5sh2RRI+cgVmTauhc7PiHD+7oFSRceMKRSDo0DjeSJA25TDZSP8ChHZPHVZLJxhFxbpXWnuY0/33X01x+w1188Jv39yq/ZMEMKgIsPqae5SdNL0ELpfJlT4IkachFIisWzebGjVsOWnfFwlnAwG/kh/LcKq0X9rXx8f97GICqZAX72zKMq3r51mXmpBp+/bGLmDyuslRNlMqWPQmSpCFXW5nkmqUNVCUP/GenKlnB1UsbqBnE4mdDeW4Nj+ebWvnvu56mLZMt2P+KI8Yz/8g6ANqzHWx6prHXsQYI0tDwk1KSNCzqqlOsXrmYK/qZqrQqWcHqlYupqx78jDNDeW4NrWu//Rtu+c12Ysz1DPTMI3jv+Q00tWa4+KTpHDGhukStlMYegwRJ0rCoSSVYOKeeDauWccO6zay9fzu797czeVwlKxbO4urDWBV5KM+t4ulrwbJpE6qI3ZKPewYJb1o4e7iaJ6kbgwRJUr+a2zMEAslEIJONRCK1hzFcpyaVoCaV4Nrl87hu+fyu80I87GFAQ3luHboX97Xxvd8+y60P7uDEGRP45BtOLii/dMEMvrp+M6fPnczZx04tUSsl9eSnpiSpl5Z0lqaWNNev38zaTdtobE5TX5tixaLZXFOEp/LdA41iP9wfynNr8B5/bh+f/P4jAGzZ1czfXHZSwVSmC2ZN5J6PvJppdVWlaqKkPpi4LEkq0JLOsmlrI+d+9nZu3Lilaw2CxuY0N27cwrmfuZ37tzbSks4e5EwaS3bsaeHr92wlxsLZo06fO5mp43MBwO79bfxu596C8hCCAYI0AtmToMNW7OEIkkqrqTXNlf0kAAO0ZTq4Ys29bFi1zDH+AuCK1b/i9sdeAHI9A6fMntRVlqgIfPDCV5CoCLzmpOldAYOkkc07OR2yoR6OIGn4NbdnuH7d5n4DhE5tmQ5uWLeZ65bPc7z/GBNjJITC5OP6btOQ/vDBHQVBAsA7zzpmGFomqZgcbqRD4nAEqTwFAms3bRtQ3bX3bwfCQetp9Htubyv/sWEzb/r/7uRLtz3Zq/zSBTNIVATOPW4qp/YIECSNTj7+0SFxOIJUnpKJ0BX0H8zu/e0kEwYJY8Gvtuzm0z98FIDmtiwfuPC4gvJzj5vGvR99tQubSWXEngQN2mCHI7S0Z4apZZIOVyYbqa8d2IJjk8dV5qcYVbnY1tjcZ0/SBccf0bWi9ZMv7OPZl1oKyiuTFQYIUpmxJ0GDNtjhCNctnz/ELZJULJHIikWzuXHjloPWXbFwFmCQUA6yHZE/uP4u7tvaCMCZDVOYOammq3xcVZIPXPAKptVVsfzE6QU5CJLKkz0JGjSHI0jlq7YyyTVLG7qeGvenKlnB1UsbTFoepXpOU5qoCNRWvjw09NYHd/Q65k8vOI4/XHy0AYI0RhgkaNAcjiCVt7rqFKtXLu43UKhKVrB65WLqqgf2OaCRYftLLXxl3VO8/ksb+da9v+9VfumCGSQrAkvnTePYaeNL0ELp4JrbM7S0Z0lnO2hpz9LskOYh4yMgDZrDEaTyVpNKsHBOPRtWLeOGdZtZe/92du9vZ/K4SlYsnMXVTnE8Kv34oZ38049+B8CE6h287fSjC8ovO3UmF588nUm19hRo5HHa9eEXenY5auiFEO5btGjRovvuu6/UTTlkzze1cu5nbj9g8nJVsoINq5ZxRF31MLZMUjH1XCwRokOMRritL+7nkWf38toFMwr279jTwln/eBsA1akKfv2xixhf5f+lRr7Oadf7m1Wxs3dz4Zx6A4UeTjvtNDZt2rQpxnjaYI/100GHpHM4whUH+YV1OII0unVfPd2/vSPbvrYMl99wFw9t30tlsoJz500rCAJmTKzh6vMamHdkHRedcKQBgkYNp10vDXMSdEi6D0e4asncrqnvJo+r5Kolc9mwapkRvSQNoZ4jAcZXJbtywNozHfzi0ed6HfORS07gLafNZuIA88qkUnPa9dLxMYIOWU0qQU0qwbXL53Hd8vkOR5CkIbb1xf384IEd/PCBHfz5RfO46MQjC8pfd8oMNr+wn/PmTXWop8qC066XjndyOmwOR5Ck4fHNX/2er6x7CshNU9ozSHjHmcfwzrOPYYJDPVUmnHa9dBxuJEnSCLP5hX3c/tjzvfZf2i0ZecMTL5DtKBxyNLE2ZYCgsuK066VjT4IkSSPEzj2trFz9K363s4kp4yq55yMXkky8/Dzv5FkTeNvpR3HG3ClceMIRJCp8aqry5rTrpWNPgiRJI8S0uipe3N8OwIv72/nVlt0F5SEE/nHFKbxx4Sxnj9OY4CrwpWOQMEa4QqEkjQxPvbCPf/35E7zm8+v5ze9fKihLVARee/J0KpMVLD/xSGqdplRyFfgS8dOnzLlCoSSNLP9+x1PcfF9utpZbH9zBK4+aVFD+gQuO4y8vPt51DKQ8V4EvDVdcLoHhWnHZFQolqXSeeK6JF/e3c2bDlIL9t//uea5Ycy8Ax04bxy+uO78ErZNGJ1eBHxxXXFafXKFQkobfE8818Sdf38QTz+9j3pHj+emfLy0oP+cVU3njK2dywQlHcuHxR5SoldLo5LTrw8echDLlCoWSVBqz6mv4fWMzAI8/t48nnmsqKK9MVvCFyxfy+lNnMs4hRZJGKIOEMjXYFQrBafQkaaAef66Jf/nZ47z6X9axLR8QdKqtTLJs/hFUpyq4ZMF0OhzVK2kU8hFGmXKFQkkaOn//w0dZ9/gLAPzowZ2857yGgvK/uexEPvcHpxYMjZCk0cSehDLlCoWSimEsT58cY+SRZ/f2mqYUClc+/vmjz/UqnzGxxgBB0qjmJ1iZcoVCSYdjrE+ffN/WRv7if37Lll37OecVU/j6VWcWlC8/6Ug2PDmTS06ezvnzTT6WVH7sSShTrlAo6VB1Tp987mdv58aNW7qGLjY2p7lx4xbO/czt3L+1kZZ0tsQtHTqzJtXw9Iv7AbjrqRd5cV9bQfmk2kr+7W0Lee2CGdRUlm+wJGnsMkgoY65QKOlQDHT65KbWgeU9jVQPbd/DZ3/8O17z+fW9fpbpE6t51Zx6aisTXHrKTJrbyzcgkqS++Pi4jLlCoaTBGuz0ydctnzdqeyL/8uYHeGTHXgB+8ejzvHHhrILyz731lRwxoYpqPyMljUGj85NdA1aTSlCTSnDt8nlct3y+KxRKOqDBTp983fL5Q9yiwxNj5OFn95JKVDB/el1B2aWnzOgKEn72yHO9goSjp9QOWzslaaTxLnGMcIVCSQNRTtMnr3/8BT723Yd4Znczb3jlTP718oUF5ZcsmMETzzVxyYIZnDdvWolaKUkjk0GCJKlL5/TJAwkUOqdPHqkPHqaMr+SZ3bmFzn7x6PO0prMFQ4fmTh3HF3oEDpKkHBOXJUldOqdPHohST58cY+SBbS/xjz96lDd8+U4y2cI8ihNnTOCYKbXUVSW56MQj2TvKE60laTjZkyBJ6tI5ffJNd289YPLySJg+OUZ4z9d+zXN7c9OT3rNlN+e8YmpXeQiBG1cuZnZ9DVXJEdrdIUkjlD0JkqQCI2365Bgjv/n9SzzzYnPB/oqKwGtPfnnl458+vLPXscdOG2+AIEmHYEgeAYUQLgPeDpwAjIsxviK//wTgMuDrMcbtQ/HakqTDM5KmT/7hAzv4h1sfZftLLVy1ZC4fe92JBeWvf+VM9ramuXTBDJYcN7Wfs0iSBquoQUIIIQBrgD/O72oBarpVaQT+AQjAZ4r52pKk4hkp0yfXViXY/lILAD96aCcfvfQEcn9qchYdXc+io+uHrT2SNFYUe7jRnwDvAFYDk4F/7l4YY9wJ3AlcWuTXlSQNgdrKJDWVCVKJCmoqE0UPEGKMbHqmkU//4BHeceM9xFiYCH3OsVOZUJ1kQnWSs46dwn5XPpakYVHsx0HvBn4LvCfGGEMIfU178QTwmiK/riRplOnoiLRlOnj7V++hJZ27+X/8uX0Fi55VJiv4znvPomHqeCr7yZGQJBVfsT9x5wO3x56Pggo9D7hqjSSNIR0dkfu27mbnnlYa97fz9K79PLJjL8lE4ILjj+iq95M+ko+Pnz7BAEGShlmxexIyQPVB6swC9hX5dSVJI9Q37nmGL/z8cZ5vauOKc45hxcKX12Fobs/y5tNmMb4qySWnzODsY6eUsKWSpE7FDhIeAc4PIYS+ehNCCNXABcD9RX5dSdIIku2I7G1Js6clzfNNrTzflFvLYOMTu3jHmXOYWJNiQk2KVKKCC44/kguOP7LELZYkdVfsIOG/gS8Bnw8hXNu9IISQAP4FmAn8VZFfV5JUIh0dkfueaeQHv93B802trLr4ePa1Zeh8VHTGMVNIVjzJuKoki46u5+jJtSQTDh+SpJGs2EHC9cDrgQ8CbwWaAEIINwNnkgsQ/i/G+PUiv64kqQSyHZGnnt/HH3zlLiJQEeBtpx9NfW0l46oSXT0G333/OcyfXkfK4ECSRoWiflrHGLPA64C/AyqBeeTWRFgB1AKfIhc8SJJGmWxH5J7NL/JSc3tX8vGjO/bSlungxJkTAOiI8NjOvRw/o46GaeOZMr6KVKKCk2dNNECQpFGk6CvixBgzwCdCCJ8kFyRMAfYAv8sHEZKkUeb6dU/x1Q2b2bWvnWsvmsey+S/PSDSuKsFbT5vNgllNvO6UmZzZMNnhRJI0yg3Zspn5xOXHhur8kqTh8UJTG8++1MKufe0AbHxyF5edOjM3lKg6STJRQcO08SVupSSpmHzUI0ki2xG566kX+fh3H+KT33+4oKwyWcGS46YCUF+b4oTpdRwzpZbJ4yrtMZCkMlX0noQQwmzgz4FXArOBVB/VYozx2GK/tiTp0Dz+XBNv++rdAIyrTLDq4uOpTiUAmFCdZNn8I1j7J2dzyqyJBgaSNAYU9ZM+hHA+8Di5IOFccsnKoY8v/8JIUglksh388qldpLMdBfuPn15Hw9RxAOxvz7LhiV1dZSEEkokKFh1db4AgSWNEsXsSPgskgHcC34gxdhykviRpmHz+Z4/z9Xu2smtfO//97tM597hpXWUhBP7ojKPZ+mIzlyyYwelzJ5ewpZKkUit2kLAA+GaM8aYin1eSdJj2tqa7ko9vfXBHQZAAcNW5DaVoliRpBCp2v3EjsLvI55QkDUAm28HGJ3bx12sf4Iu/eKJX+aULZgBwRF0V08ZXDXfzJEmjSLF7En4ALC3yOSVJA3DX5hd5x42/AmDGxGr+dNkrqKgIXeWLjq7n5veexaKj6wv2S5LUU7F7Ej4CTAwhfDmEMK7I55YkAelsB3dvfpHccjQvO7NhCpNqcxPK7djTym+2vVRQXlEReNUxkw0QJEkHVdSehBjjrhDCxcA9wDtDCI+TW225j6rxwmK+9kCEEM4FPgScDUwmNzTqQeALMcZbe9Q9G/gYcCZQDTwJ/Cfwb64cLalUPvn9h7nl/u281Jzmxx86l+OnT+gqSyUqePsZR7O/Lculp8zglbMnla6hkqRRrahBQgjhJOB2oD6/a2E/VWM/+4dMCOFjwKeAXeSGRe0AppJr4/nArd3qvgH4X6AV+Da5YOIy4PPAOcBbh7HpktTlhaY2XmpOA3DrAzsKggSAD7/m+FI0S5JUZoqdk/AvwBTgb4D/Ap4dCU/dQwhvJRcg/BxYEWNs6lGe6vbvCcBXgSxwfozx1/n9HwduA94SQrg8xvit4Wq/pLEjne3gzid3ceuDO1gwexLvOHNOQfmlC2bwgwd2MH1CNeOri74epiRJQPGDhLOAtTHGTxf5vIcshFABfAZoBv6oZ4AAEGNMd/v2LcA04GudAUK+Tmu+N+IXwPsAgwRJRff93z7Ltd/5LQCP7mjqFSScP/8I/vd9Z7PwqEnmFkiShkyxE5fbgaeLfM7DdTYwl9xwosYQwqUhhFUhhD8LIZzVR/0L8tsf91G2nlywcXYIwfkDJR2y9kwH921t7LX/whOOJJXI3fw/uH0Pv9/dXFBeU5ngtDnOTiRJGlrF7km4Azi9yOc8XIvz2+eATeQWfOsSQlgPvCXG+EJ+1/z89vGeJ4oxZkIIW4CTgAbg0QO9cAjhvn6KHDQsjVEdHZG/XvsgP3poB01tGe75yIUcUVfdVT6xJsVbTjuKcZUJLjllBrMm1ZSwtZKksarYPQl/CZwYQvirEMJIecx1RH77XqAGeDVQB5wM/AQ4D/ifbvUn5rd9zcrUff+korZS0phQURF4+sX97G3NECP85KGdver844oFfOx1J7qegSSpZIrdk/Ax4CHg74H3hBB+Q/9ToL67yK/dn0R+G8j1GPw2//3DIYQ3kesxWBpCOCvGeNcAztf5F/ugMzTFGE/r8wS5HoZFA3gtSaNQWybLxid28cMHd3Dh8Udy6SkzCsovPWUG92zZzaxJNSQqiv2sRpKkw1fsIGFlt3/PzX/1JQLDFSR0Dvrd3C1AyDUixpYQwk/ybTkduIuXg5qJ9K1zvsH+ehokjXH/9cun+YdbfwfAS83pXkHCZafM5JTZkzh19kRGTqerJEkvK/YjrLkD/Goo8useyGP57Uv9lHcGEZ0Dfzvrz+tZMYSQJNf+DLC5SO2TNEq1prM80GNVY4CLT3o5KNjwxAvsaUkXlNePq+SVR00yQJAkjVjFXnF5azHPVyTryd3UHxdCqIwxtvcoPzm/fTq/vQ14O3Ax8M0edc8DaoH1Mca2oWmupJGupT3LX699gJ8/+jzZjsimj19ETWWiq/zoKbVcfNJ05kyt5XULZjLB9QwkSaNM2Q+GjTHuIrdq8kRyi7x1CSFcBLyG3NChzilPbya3KvPlIYRXdatbDXSu//DvQ9xsjVLN7Rla2rOksx20tGdpbs+UukkaAtWpCh7Yvod9bRla0lnueOz5XnW+8o7T+OvXnsAChxRJkkahIXm8FUI4E7gKWEhuFqA9wH3A6hjjL4fiNQ/iWuAM4KMhhPOAXwFzgDeRW1n5PTHGlwBijHtDCO8hFyzcEUL4FrAbeD256VFvJhd0SF1a0lmaWtJcv34zazdto7E5TX1tihWLZnPN0gbqqlPUpBIHP5FGjNZ0lnWPv8CtD+7gDxcfxdnHTu0qCyFw6YIZ/NttT3L05FrSHQedx0CSpFGl6EFCCOHTwF/z8ixAnV4JXBlC+EyM8SPFft0DiTE+H0I4g9zsS28CzgSagB8C/xhjvLtH/e+GEJYCHwXeDFQDT5ILNr4YY/SOQF1a0lk2bW3kyjX30pbp6Nrf2Jzmxo1buOnuraxeuZiFc+oNFEaRz//sca5fn0s9qk4mCoIEgD8642hec9J0Tpo5wZ4CSVLZKepwoxDCW4GPAM+Q60loIJcQ3JD//hlgVQjhD4r5ugMRY9wdY7w2xjg3xlgZY5wSY3xDzwChW/07Y4yXxBjrY4w1McYFMcbPxxizw912jWxNreleAUJ3bZkOrlhzL02t6T7LVVqt6Sy/27m31/7lJ03v+vdPHtlJOlv4/ztjYg0nz3IokSSpPBW7J+ED5FY2XpzPBej0NPCfIYTvkVtH4f3Ad4r82tKwa27PcP26zf0GCJ3aMh3csG4z1y2fR02lSawjwe797fzt9x7mF48+x4TqFL/8qwsKFi5beNQkzmqYwqI5k7hkwQySLmomSRpDip24fCpwc48AoUt+//+QG3okjXqBwNpN2wZUd+392+k9Ck+lMqE6ycYnXqC5PcvOva3c//vGgvKKisA3rz6TD7/meE6aaY+BJGlsKXaQkASaD1KnmSFKmJaGWzIRaGwe2DCi3fvbSSa80RxOLe1Zbn1wB+//xqZeQ4qSiQpekx9S1DB1HHtbnIlKkqROxb5ZfxJ4XQjhr2OMvcZfhBAqgEuAp4r8ulJJZLKR+trUgAKFyeMqyWQj5i4Pn49+90HWbtoOwNwp4zh++oSC8qvPa+BdZx/D8dPr7CmQJKmbYvckfBM4Afi/EMJx3QtCCMeSmz70ROAbRX5dqSQikRWLZg+o7oqFswAnxhoKze0ZnnphX6/9y098Ofn41gd30HNisoZp4zlhhrMTSZLUU7F7Ev6F3ErFlwKvDSE8C+wApgOzyAUlG/P1pFGvtjLJNUsbuOnurQdMXq5KVnD10gaTlotsW2Mz/3Dro9z2u+d5xRHj+cEHzi0oP3/+NE6ZPZHz5x/BpQtmlKiVkiSNPkXtSYgxtgMXkVtfYAswG1gMHJX//qPAhfl6Ulmoq06xeuViqpJ9/zpVJStYvXIxddWpYW5Z+ZtQk+LnjzxPa7qDh7bv5ZkXC1OiqlMJvvenS7j2onnMd0iRJEkDVuzhRsQY0zHGf4wxHgdMIBcgTIgxHpff72TxKis1qQQL59SzYdUyrloyl8njKoFcDsJVS+ayYdUyF1I7DPvbMnzvt8/y3v++j+f2thaUTahOcd683CJn844cz/NNrX2dQpIkDdKQjn2IMe4Deg8UlspMTSpBTSrBtcvncd3y+SQTgUw2AtEhRofpfV/fxPrHXwDgrGOn8K6zjykov/ai+ay6+HiOO7KuBK2TJKk8FXvF5dNCCH8TQjiyn/Lp+fJXFvN1pZGitjJJTWWCVKKCmsqEAcIg7GvL8PvdvWdQvujElz9Ofvjgjl7lJ86cYIAgSVKRFfsO5jpgCfCpfsqfA94NvAJ4Z5FfW9Io9OTzTXz2x49xx+MvcPaxU1hzxekF5RefNJ1v3PMMrz15OpeYfCxJ0rAodpBwFnB77DnPYF6MMYYQbgPOK/LrShqlqpIJfvrIcwDc+eQu9jSnmVj7cpL3tLoqfvRn5/Z3uCRJGgLFTlyeDmw7SJ1nAR8HSmNIU2uaW+7fxvtuuo/m9sKVjY+aXMupsycCcOy08Ty7p6UUTZQkSd0UuyehGZh2kDrTgLYiv66kEewPr7+bR3bsBeCyU2f2Gjb0t68/iUk1KRqmjS9F8yRJUg/F7kn4DfCGEEKff+lDCBOAN+TrSSoze1vT7NzTexrSVx8k+XjR0fUGCJIkjSDFDhJuINdT8LMQwindC0IIpwI/Babm60kqEw9se4l3r7mXV33q53zup4/1Kn/dKTM4ccYEPvya+fzF8vklaKEkSRqMog43ijF+O4TwWnIzF90fQngO2A7MAo4EAvBfMcZvFvN1JZVWpiPyi989D8BPH3mOf8h2kEq8/Axi3pF13GrysaQBaG7PEAhd681EIrVOJy0Nu6L/1sUYV4YQfgl8ADiJXDIzwEPAF2OM/1Hs15Q09Pa0pPnZI89x55O7+NxbT6WiInSVLTxqEjMnVvPsnlaOmlzDzj2tHDW5toStlTTatKSzNLWkuX79ZtZu2kZjc5r62hQrFs3mmqUN1FWnXLleGkZDEprHGG8Abggh1AKTgJdijL1XSZI0KsQYec3n17Nzby7f4G2nH83pcyd3lYcQ+Oe3nsqs+hrmTBlXqmZKGqVa0lk2bW3kyjX30pbp6Nrf2Jzmxo1buOnuraxeuZiFc+oNFKRhUuychAIxxuYY47MGCNLo8VJzOy/uK5yALITAsuOP6Pr+1j6Sj89+xVQDBEmHpKk13StA6K4t08EVa+6lqTU9zC2Txq4hDRIkjR53b36Rd/3nr3jVp3/OjRu39Cp/3SkzOGX2RP7qtcfz7iVzS9BCSeWouT3D9es29xsgdGrLdHDDus209FhrRdLQKHqQEEJYGkL4QQjh+RBCOoSQ7ePL33BphNnbkmbd4y+Q6Yjc+uAOei6cfs4rpvK9P13Ce5cea76BpKIJBNZuOtg6rDlr799Obg4USUOtqDkJIYRLge8CCeAZ4DHAgEAaIRr3t/OTh3fy0LN7+PQbFxSUnTdvGuOrkuxryzCxtpI9LWkm1VaWqKWSxopkItDYPLBhRLv3t5NMGCRIw6HYicufANLApTHGnxb53JIOQ2s6yzmfuY3m9iwA717SwNypL+cQVKcSfPFtr2TekXXMrrenQNLwyGQj9bWpAQUKk8dVkslGzF2Whl6xhxudDHzbAEEqrd3729nbI8GvOpXg7GOndn3fV/LxBccfaYAgaVhFIisWzR5Q3RULZwHxoPUkHb5iBwn7gN1FPqekAbr9d8/zx/9xD4v//uf87329x/i+7pQZLDx6Eh+79ATetHBWCVooSYVqK5Ncs7SBquSBb0mqkhVcvbSBGhdWk4ZFsYOEXwBnFfmckgbo2T0tbHxyF9l88nFPb3jlTG75k3O46twGZk6qKUELJam3uuoUq1cu7jdQqEpWsHrlYuqqU8PcMmnsKnaQsAo4NoTwsRCCmUXSENi1r42v37OV//eT3/Uqe81J0+m2EDLtPaYU9NdS0khUk0qwcE49G1Yt46olc5k8LjdpwuRxlVy1ZC4bVi1zITVpmBW7z+5vgYeBTwJXhhB+A7zUR70YY3x3kV9bKnu79rVxxj/8gmxHJFkReM+5DQUzEE0dX8WX/mgRC4+exIyJ9hRIGj1qUglqUgmuXT6P65bPJ5kIZLIRiA4xkkqg2L91K7v9+5j8V18iYJAgHcALTW3UVSep7vbkbOr4Kk6eNZHf/v4lMh2Rnz7yHH/wqqMKjrtkwYzhbqokFU1tt4DAjgOpdIodJLgMq3SYbn1wB1+762l+tWU3X3zbQl53ysyC8stOmUFlInDJghmcP29aiVopSZLKWVGDhBjj1mKeTxqLHn+uibs35yYJu/XBHb2ChHcvmctV5zaUommSJGmMKHbisqQBeL6pla/d9TRfWfdUr7JL88OFQoDm9iwxFs4JbvKxJEkaamYCScPsyeebuOjz64kRJlQnufKcuVR2m/bvuCPr+NxbT+Xc46ZyxITqErZUkiSNVYfdkxBCyB7CV6YYjZdGuuf2tpLtKOwJOHbaeGbl1yjY25rhzid39TruzafNNkCQJEklU4yehEMZ++B4CZW1m+/bxrfvfYZfb23kW+85kzMapnSVhRB43Skz+c3vG7l0wQxOmT2xhC2VJEnq7bCDhBijeQ1S3v62DHta0mza2si9TzcCueTj7kECwKqL55tbIEmSRixzEqRDtGNPCz96cCcVAZafNJ09Len8wj9w/vxpfONXz1AR4KWWdK9jDRAkSdJIZpAgDVKMkfWPv8C7Vt8LwPQJ1Sw6up4QAqlkYGJNirlTa/mnFQt49YlHMnV8VYlbLEmSNDgGCdJBPL+3lWl1Vexvz7KnJc3eljR11SlqKxM0t2fZubeV3c3tnD53csFKoZeffnQJWy1JknToDBKkfnztl0/zv5u28dtte/jqO09j+oSarrJxVUmWzT+C3fvbuezUmSw8qr4gQJAkSRrNvKuRuokxdvUY/Ojhnfx22x4A1j2+i3ecOYeJNSkm1qSoqUzwpT9aaG6BJEkqSwYJGtO2NTZz64M7mDK+ijMbprC3W/Lx2Q1TuOupF0mEQEdHZP70uoJjDRAkSVK5MkjQmBRj5Lu/2c6ff/u3AJwwvY55R+SCgMpkBRNrUrzt9KOZVlfF8pOmM3lcZSmbK0mSNKwMEjQm7NrXxpRxlV1DifY0p5k2vpqKAB0RHt3ZRIyR446so6Yy0XWcyceSJGksMkhQ2YoxcsP6zXz/gWd5dEcTN737DMZXvXzJT6ur4oy5U0hWBC47dSYNR4wvCBAkSZLGKoMElZ0YI/vyKx/fcv92frezCYA7n9zFZafOZGJNikm1KapTCb5+1RlUVJhbIEmS1J1Bgka9rS/u54cP7ODYI8Zz0swJ7G3JkO3IJR+fc+xUfreziWRFoCP2Tj42QJAkSerNIEGjVoyR/9y4hU/98FEAzmqYwkcuOQGAqlQu+fidZ8/hhJkTuOiEI5lYmyplcyVJkkYNgwSNGo3725lUm+oaSrS3JcOMSS8vcHbf1kbGVyeYMbGG6tTLuQVzpowrRXMlSZJGLYMEjWjtmQ5uWP8UP3hgB9saW/j6uwtzCF5xxHiOn17H9InVXHbKzF4BgiRJkgbPIEEjWiLAf9+9lef2tgFw3zONLDluatfKx9WpBD/84LkkzC2QJEkqmopSN0AC2PzCPr502xP89vcvFexPJCo4f940AFKJQKajg3lH1nHkhOquHgMDBEmSpOKyJ0El92+/eILP/exxAJ7b28apR00qKH/3kgbOOnYqF55wBHXVJh9LkiQNNXsSNKz2NKd77XvVMZO7/v2jh3Z2TV/aad70Ot64cJYBgqSSam7P0NKeJZ3toKU9S3N7ptRNkqQhY0+Chty+tgz/uXELtz64g/3tGdZ/eBkhvDxE6PS5k5k1qYaTZk7g0lNm0BEjCRxCJGlkaElnaWpJc/36zazdtI3G5jT1tSlWLJrNNUsbqKtOUeOECZLKjEGChlwqEfjq+s00teWeuj20fS8LZk/sKk9UBNZ9+HySCTu2JI0sLeksm7Y2cuWae2nLdHTtb2xOc+PGLdx091ZWr1zMwjn1BgqSyop3ZSqaJ55r4gs/f5wtu/YX7K9KJrjopCPz/67g8eeaeh1rgCBpJGpqTfcKELpry3RwxZp7aWrtPZRSkkYzexJUFJ/43sOs+eXTAFSEwAcvPK6g/F1nHcP584/gguOPYHyVl52kka+5PcP16zb3GyB0ast0cMO6zVy3fB41lX6+SSoPPr7VoO3t44nZojn1Xf++9cEdvcpPPWoSrz91pgGCpFEjEFi7aduA6q69fzuYSyWpjHjHpgHZvb+dNb98mlsf3EFddZJb/uScgvILjz+CSbUpzj52CpcsmEGMsSA5WZJGm2Qi0NjHjGx92b2/nWTCzzxJ5cMgQQMSgC/f/mTX9KTPvtTCzEk1XeXjqpLc+9FXkzK3QFKZyGQj9bWpAQUKk8dVkslGzF2WVC68o1OXGCOP7tjL5376GLv3txeU1Y+r5OxjpwBQk0rw6I69vY43QJBUTiKRFYtmD6juioWzgHjQepI0WtiToC5/9q3f8L3fPgvAzEk1vO30owvK37f0WP7o9KM5f/4R1FT6uExSeautTHLN0gZuunvrAZOXq5IVXL20waRlSWXFR79jUIyRfW29Vwo99ahJXf/uK/n47FdM5bULZhggSBoz6qpTrF65mKpk338uq5IVrF652BXhJZUdg4QxZOeeVv7fT37HBZ9bx7Xf/k2v8ksWTGd8VZLLTp3JO86cM/wNlKQRpiaVYOGcejasWsZVS+YyeVwlkMtBuGrJXDasWuZCapLKkn2jY8j+9gxfvv0pALa/1MK+tkzBlKQzJtaw6eMXUdnPEzNJGotqUglqUgmuXT6P65bPJ5kIZLIRiA4xklS2vBscQ46dNp7jp9cBkKoIPLazd/KxAYIk9a22MklNZYJUooKayoQBgqSy5ifcGPPnF80DYOm8aVTbPS5JkqQ+GCSMMa85aXqpmyBJkqQRzrElkiRJkgoYJEiSJEkqYJAgSZIkqYBBgiRJkqQCJi5LkiRJQ6S5PUMgdK2xEonUjoIplEd+CyVJkqRRpiWdpaklzfXrN7N20zYam9PU16ZYsWg21yxtoK46NaJXazdIkCRJkoqoJZ1l09ZGrlxzL22Zjq79jc1pbty4hZvu3srqlYtZOKd+xAYK5iRIkiRJRdTUmu4VIHTXlungijX30tSaHuaWDZxBgiRJklQkze0Zrl+3ud8AoVNbpoMb1m2mpT0zTC0bHIMESZIkqUgCgbWbtg2o7tr7twNhaBt0iAwSJEmSpCJJJgKNzQMbRrR7fzvJhEHCiBFCeEcIIea/ruqnztkhhFtDCLtDCM0hhAdCCB8KIYzM7BJJkiSVXCYbqa9NDaju5HGVZLJxiFt0aMZckBBCOAr4N2DfAeq8AVgPnAfcAnwZqAQ+D3xrGJopSZKkUSgSWbFo9oDqrlg4CzBIKLkQQgBWAy8CX+mnzgTgq0AWOD/G+O4Y44eBVwJ3AW8JIVw+PC2WJEnSaFJbmeSapQ1UJQ98m12VrODqpQ3UjNCF1cZUkAB8ELgAuALY30+dtwDTgG/FGH/duTPG2Ap8LP/t+4aykZIkSRq96qpTrF65uN9AoSpZweqVi6mrHtiwpFIYM0FCCOEE4J+Af40xrj9A1Qvy2x/3UbYeaAbODiFUFbmJkiRJKgM1qQQL59SzYdUyrloyl8njKoFcDsJVS+ayYdWyEb2QGoyRFZdDCEngv4FngI8cpPr8/PbxngUxxkwIYQtwEtAAPHqQ172vn6LjD9IGSZIkjWI1qQQ1qQTXLp/Hdcvnk0yEfJJyHLFDjLob+S0sjr8BFgJLYowtB6k7Mb/d00955/5JRWiXJEmSylhtt4BgBHcc9FL2QUII4XRyvQefizHeVYxT5rcHTUWPMZ7WT5vuAxYVoS2SJElS0ZV1TkK3YUaPAx8f4GGdPQUT+ymf0KOeJEmSVFbKOkgAxgPzgBOA1m4LqEXgb/N1vprf94X894/lt/N6niwfdMwFMsDmIW25JEmSVCLlPtyoDbixn7JF5PIUNpILDDqHIt0GvB24GPhmj2POA2qB9THGtqK3VpIkSRoByjpIyCcpX9VXWQjhE+SChP+KMf5Ht6Kbgc8Al4cQ/q1zrYQQQjXw6Xydfx+yRkuSJEklVtZBwqGIMe4NIbyHXLBwRwjhW8Bu4PXkpke9Gfh2CZsoSZIkDalyz0k4JDHG7wJLyS2e9mbgA0AauBa4PMZ40JmNJEmSpNFqzPYkxBg/AXziAOV3ApcMV3skSZKkkcKeBEmSJEkFDBIkSZIkFTBIkCRJklTAIEGSJElSAYMESZIkSQUMEiRJkiQVMEiQJEmSVMAgQZIkSVIBgwRJkiRJBQwSJEmSJBUwSJAkSZJUIFnqBkiSxp7m9gyBQDIRyGQjkUhtpX+SJGmk8BNZkjRsWtJZmlrSXL9+M2s3baOxOU19bYoVi2ZzzdIG6qpT1KQSpW6mJI15BgmSpGHRks6yaWsjV665l7ZMR9f+xuY0N27cwk13b2X1ysUsnFNvoCBJJWZOgiRpWDS1pnsFCN21ZTq4Ys29NLWmh7llkqSeDBIkSUOuuT3D9es29xsgdGrLdHDDus20tGeGqWWSpL4YJEiShlwgsHbTtgHVXXv/diAMbYMkSQdkkCBJGnLJRKCxeWDDiHbvbyeZMEiQpFIySJAkDblMNlJfmxpQ3cnjKslk4xC3SJJ0IAYJkqQhF4msWDR7QHVXLJwFGCRIUikZJEiShlxtZZJrljZQlTzwn52qZAVXL22gxoXVJKmkDBIkScOirjrF6pWL+w0UqpIVrF65mLrqgQ1LkiQNHYMESdKwqEklWDinng2rlnHVkrlMHlcJ5HIQrloylw2rlrmQmiSNEPbnSpKGTU0qQU0qwbXL53Hd8vkkEyGfpBwdYiRJI4ifyNIo0dyeIRC6bqoikVpvqjRKdb927TiQpJHHOwxphGtJZ2lqSXP9+s2s3bSNxuY09bUpViyazTVLG6irTjk8Q5IkFZVBgjSCtaSzbNrayJVr7qUt09G1v7E5zY0bt3DT3VtZvXKx47glSVJRmbgsjWBNreleAUJ3bZkOrlhzL02tA1vJVpIkaSAMEqQRqrk9w/XrNvcbIHRqy3Rww7rNtLRnhqllkiSp3BkkSCNUILB207YB1V17/3YgDG2DJEnSmGGQII1QyUSgsXlgw4h2728nmTBIkCRJxWGQII1QmWykvnZgK89OHleZn2tekiTp8BkkSCNUJLJi0ewB1V2xcBZgkCBJkorDIEEaoWork1yztIGq5IF/TauSFVy9tMHVaiVJUtEYJEgjWF11itUrF/cbKFQlK1i9cjF11QMbliRJkjQQBgnSCFaTSrBwTj0bVi3jqiVzmTyuEsjlIFy1ZC4bVi1zITVJklR0jk+QRriaVIKaVIJrl8/juuXzSSZCPkk5OsRIkiQNCe8wpFGitltAYMeBJEkaSg43kiRJklTAnoQxork9QyB0DVWJxIIn05IkSVIn7xLLXEs6S1NLmuvXb2btpm00Nqepr02xYtFsrlnaQF11yqRXSZIkFTBIKGMt6SybtjZy5Zp7act0dO1vbE5z48Yt3HT3VlavXOzsOJIkSSpgTkIZa2pN9woQumvLdHDFmntpak0Pc8skSZI0khkklKnm9gzXr9vcb4DQqS3TwQ3rNtPSnhmmlkmSJGmkM0goU4HA2k3bBlR37f3bgTC0DZIkSdKoYZBQppKJQGPzwIYR7d7fTjJhkCBJkqQcg4QylclG6mtTA6o7eVxlfgVfSZIkySChbGU6OnjjwlkDqvvGhTPJdBw4d0GSJEljh0FCmUolKnjXWcdQlTzwf3FVsoJ3nnkMqYSXgiRJknK8MyxTiYrAnU/u4stvX9RvoFCVrODLb1/Exid3kagwJ0GSJEk5BgllKpONfP5nj7NzTys//tB5XHnOMUweVwnkchCuPOcYfvyh89i5p5V//fkT5iRIkiSpiysul6lI5A0LZ/Gx7z7ESTMn8PYz5vCTD53L+KoU+9rS/OyR53j/1zfxyI69XLVkLmCQIEmSpByDhDJVW5nkmqUN3HT3Vh5+di8fueVBPnJL73pVyQquXtpATaWXgiRJknIcblTG6qpTrF65+IA5CatXLqauemBTpUqSJGlsMEgoYzWpBAvn1LNh1TKuWjK3ICfhqiVz2bBqGQvn1FOTSpS4pZIkSRpJHGNS5mpSCWpSCa5dPo/rls8nmQj5JOXoECNJkiT1ybvEMaK2W0Bgx4EkSZIOxOFGkiRJkgoYJEiSJEkqYJAgSZIkqYBBgiRJkqQCBgmSJEmSChgkSJIkSSpgkCBJkiSpgEGCJEmSpAIGCZIkSZIKGCRIkiRJKmCQIEmSJKmAQYIkSZKkAslSN0BSaTW3ZwgEkolAJhuJRGor/WiQJGks805AGqNa0lmaWtJcv34zazdto7E5TX1tihWLZnPN0gbqqlPUpBKlbqYkSSoBgwRpDGpJZ9m0tZEr19xLW6aja39jc5obN27hpru3snrlYhbOqTdQkCRpDDInQRqDmlrTvQKE7toyHVyx5l6aWtPD3DJJkjQSGCRIY0xze4br123uN0Do1Jbp4IZ1m2lpzwxTyyRJ0khhkCCNMYHA2k3bBlR37f3bgTC0DZIkSSOOOQlSEY2GmYKSiUBj88CGEe3e304yYZAgSdJYM7LuXqRRajTNFJTJRuprUwMKFCaPqySTjYyQpkuSpGHicCPpMHXOFHTuZ2/nxo1bum6+O2cKOvczt3P/1kZa0tkStzQnElmxaPaA6q5YOAuIQ9sgSZI04hgkSIdptM0UVFuZ5JqlDVQlD/zrX5Ws4OqlDdSMsOFSkiRp6BkkSIdhtM4UVFedYvXKxf0GClXJClavXExddWqYWyZJkkYCgwTpMIzWmYJqUgkWzqlnw6plXLVkLpPHVQK5HISrlsxlw6plLqQmSdIY5jgC6TCM5pmCalIJalIJrl0+j+uWz++akQmiQ4wkSRrjyr4nIYQwJYRwVQjhlhDCkyGElhDCnhDCxhDCu0MIfb4HIYSzQwi3hhB2hxCaQwgPhBA+FELw0aq6dM4UNBCdMwWNNLWVSWoqE6QSFdRUJgwQJElS+QcJwFuBrwJnAPcAXwD+FzgZ+A/gOyGEgse7IYQ3AOuB84BbgC8DlcDngW8NV8M18jlTkCRJKkdjIUh4HHg9MDvG+PYY41/HGK8Ejgd+D7wZWNFZOYQwgVxQkQXOjzG+O8b4YeCVwF3AW0IIlw/zz6ARypmCJElSOSr7ICHGeFuM8fsxxo4e+3cCX8l/e363orcA04BvxRh/3a1+K/Cx/LfvG7oWa7RxpiBJklRuxvpjzc6M0+7zUl6Q3/64j/rrgWbg7BBCVYyx7UAnDyHc10/R8YNqpUa07jMF3bBuM2vv387u/e1MHlfJioWzuHqErbgsSZJ0MGM2SAghJIF35r/tHhDMz28f73lMjDETQtgCnAQ0AI8OaSM1ajhTkCRJKidj+e7ln8glL98aY/xJt/0T89s9/RzXuX/SwV4gxnhaX/vzPQyLBtbMsau5PUMgdN1wRyK1I/yGu3v77DiQJEmj1ci+4xoiIYQPAtcBvwPeMdjD81unqRkiLeksTS1prl+/mbWbttHYnKa+NsWKRbO5xqE7kiRJQ27MBQkhhPcD/wo8AlwYY9zdo0pnT8FE+jahRz0VUUs6y6atjVy55l7aMi/nmjc2p7lx4xZuunsrq1cudjVgSZKkIVT2sxt1F0L4EPAl4CFgWX6Go54ey2/n9XF8EphLLtF58xA1c0xrak33ChC6a8t0cMWae2lqHdgqx5IkSRq8MRMkhBBWkVsM7TfkAoTn+6l6W357cR9l5wG1wC8PNrORBq+5PcP16zb3GyB0ast0cMO6zbS0Zw5YT5IkSYdmTAw3CiF8HPg74D5geR9DjLq7GfgMcHkI4d8610oIIVQDn87X+fehbO9YFQis3bQNgJNmTuCPz5zDq084gvFVKfa1pfnZI8/z9Xu28vCze1l7/3auWz7/IGeUJEnSoSj7ICGE8C5yAUIW2AB8MITQs9rTMcY1ADHGvSGE95ALFu4IIXwL2E1u1eb5+f3fHp7Wjy3JRGBva4a/f+PJnP2KqXztrqf57I9/15W4/MaFs/jSHy3il0/u4m++9zDJRK//R0mSJBVB2QcJ5HIIABLAh/qpsw5Y0/lNjPG7IYSlwEeBNwPVwJPAtcAXY4zObDQEMtnIP61YwKTaSi7+wvpeicur73yab9zzDF9++yL+ccUCMtnoNKOSJElDoOyDhBjjJ4BPHMJxdwKXFLs9OoAQOevYKVz4uXUHTFx+/9c38YvrlhKCsZokSdJQGDOJyxr5YoTVdz49oMTl1Xc+jf05kiRJQ8MgQSNG98Tlg7nl/u28vK6dJEmSiskgQSNGMhFobB7Y+ge797ebuCxJkjREDBI0YmSykfra1IDqTh5XSSbreCNJkqShYJCgESMSWbFo9oDqrlg4CzBIkCRJGgoGCRoxaiuTXLO0garkgS/LqmQFVy9toKay7CfnkiRJKgmDBI0oddUpVq9c3G+gUJWsYPXKxdRVD2xYkiRJkgbPIEEjSk0qwcI59WxYtYyrlsxl8rhKIJeDcNWSuWxYtYyFc+qpcRU1SZKkIeN4DY04NakENakE1y6fx3XL55NMhHyScnSIkSRJ0jDwjksjVm23gMCOA0mSpOHjcCNJkiRJBQwSJEmSJBUwSJAkSZJUwCBBkiRJUgGDBEmSJEkFDBIkSZIkFTBIkCRJklTAIEGSJElSAYMESZIkSQUMEiRJkiQVMEiQJEmSVCDEGEvdhjEnhPBiTU3N5BNOOKHUTZEkSVKZevTRR2lpadkdY5wy2GMNEkoghLAFmAA8XeKmHKrj89vflbQVY4Pv9fDxvR4+vtfDw/d5+PheDx/f68E5BtgbY5w72AMNEjRoIYT7AGKMp5W6LeXO93r4+F4PH9/r4eH7PHx8r4eP7/XwMSdBkiRJUgGDBEmSJEkFDBIkSZIkFTBIkCRJklTAIEGSJElSAWc3kiRJklTAngRJkiRJBQwSJEmSJBUwSJAkSZJUwCBBkiRJUgGDBEmSJEkFDBIkSZIkFTBIkCRJklTAIEFdQghTQghXhRBuCSE8GUJoCSHsCSFsDCG8O4RQ0aP+MSGEeICvb5XqZxkNQghPH+C929nPMWeHEG4NIewOITSHEB4IIXwohJAY7vaPFiGElQe5TmMIIdutvtf1QYQQ3hJC+LcQwoYQwt78+3LTQY4Z9LUbQnhXCOFXIYR9+c+iO0IIryv+TzRyDea9DiEcF0JYFUK4LYTw+xBCewjhuRDC/4UQlvVzzMF+P947tD/hyDDI9/mQPyO8pgf9Xq8ZwOf3L3oc4zVdJMlSN0AjyluBfwd2ALcDzwBHAiuA/wBeG0J4a+y9At9vge/2cb6Hhq6pZWMP8IU+9u/ruSOE8Abgf4FW4NvAbuAy4PPAOeT+/9Tbb4BP9lN2LnAB8KM+yryu+/cx4FRy1+k24PgDVT6UazeE8M/AdfnzfxWoBC4Hvh9C+ECM8UvF+mFGuMG8158C/hB4BLiV3Ps8H3g98PoQwp/FGL/Yz7H/R+53padfH1qzR51BXdN5g/qM8JruMpj3+rvA0/2UvQNooO/Pb/CaPnwxRr/8IsYIuZuly4CKHvunkwsYIvDmbvuPye9bU+q2j8Yvch98Tw+w7gTgeaANeFW3/dXAL/P/D5eX+mcabV/AXfn37vXd9nldH/x9WwYcBwTg/Pz7dVM/dQd97QJn5/c/CdT3+L95kVywcUyp34cR+F6vBBb2sX8p0J7/P5jRxzERWFnqn3UUvc+D/ozwmj609/oA55gENOev6ak9yrymi/TlcCN1iTHeFmP8foyxo8f+ncBX8t+eP+wNE8BbgGnAt2KMXU9BYoyt5J7KALyvFA0brUIIJwNnAtuBH5a4OaNKjPH2GOMTMf8X+SAO5drtHA7w9zHGxm7HPA18GagCrjjE5o8qg3mvY4xrYoz397F/HXAHuSfXZxe/laPfIK/pQ+E1nVek9/odQA2wNsa4q0hNUw8ON9JApfPbTB9lM0MI1wBTyD0RuSvG+MCwtWx0qwoh/DFwNLAfeABYH2PM9qh3QX774z7OsZ7cE5WzQwhVMca2IWttebkmv72xj/cbvK6L5VCu3QMd8yPg4/k6f1vMhpa5A32GA7wyhPAhcj0824HbY4zbhqNho9hgPiO8povrPfntDQeo4zV9mAwSdFAhhCTwzvy3fX3AXZT/6n7MHcC7YozPDG3rRr3pwH/32LclhHBF/ulfp/n57eM9TxBjzIQQtgAnkRuf+eiQtLSMhBBqgD8GOsjl2/TF67o4BnXthhDGAbOAfTHGHX2c74n8dt5QNLYchRDmABeSC8jW91Ptz3p8nw0h/AfwoXyvj3ob0GeE13RxhRDOAhYAj8cYbz9AVa/pw+RwIw3EPwEnA7fGGH/SbX8zuUS504D6/NdScknP5wO/yH84qm+ryf3hng6MI/ehdz25Mao/CiGc2q3uxPx2Tz/n6tw/qeitLE9/QO69+lGM8fc9yryui2uw167XehGFEKqAr5MbzvKJ7kNd8rYAHyAXzI0DZpL7/XiaXG/bfw5bY0ePwX5GeE0X19X57Vf7KfeaLhKDBB1QCOGD5GZj+B25MYBdYozPxxj/Jsa4Kcb4Uv5rPbAcuAd4BXDVsDd6lIgxfjKfB/JcjLE5xvhQjPG9wL+QG2v5iUGcLnSettjtLFOdf2Su71ngdT3sDvXa9Vo/iPz0sv9NbgapbwP/3LNOjHFdjPFLMcbH859DO2KM/0MuubQReFuPBxZj3hB+RnhNH0QIYSK5G/52YE1fdbymi8cgQf0KIbwf+Fdy0+ktizHuHshxMcYMLw/hOG+ImlfOOpPEu793nU+aJtK3CT3qqR8hhBPJJW9uIzdN5IB4XR+ywV67B6t/sKeyoitAuInc9LLfAf54MImi+R62zt8Pr/cBOMBnhNd08fwxUMshJCx7TQ+eQYL6lE/2+RK5+Z6X5Wc4GowX8luHZQze8/lt9/fusfy215jVfM7IXHIJiZuHtmll4WAJywfidT14g7p2Y4z7ySUZjg8hzOjjfMflt71yHJSTf1+/SW4O/m8Af5S/gR0sr/fB6/WeeU0XVWfCcq9e4AHymh4EgwT1EkJYRW6Ro9+QCxCeP/ARfTozv/WmdfDOym+7v3e35bcX91H/PHJPVn7pzEYHFkKoJjdsrgO48RBO4XU9eIdy7R7omNf2qKNuQgiVwM3kehC+BrzjEILhTmfkt17vA9ffZ4TX9GEKIZxBbhG2x2OMdxziabymB8EgQQVCCB8nl6h8H3DhgbrzQghn5P8g9dx/AfDn+W/7XGp9rAshnBRCmNzH/jnkenCg8L27GdgFXB5CeFW3+tXAp/Pf/vsQNbecvJVckuGtfSQsA17XQ+BQrt3OIXcfDSHUdzvmGOD95BZQWj1UDR6t8knKtwBvIBcEX9Fz3Zs+jjm3j30hhPDX5B5Y7KLvWe3GrEP8jPCaPnyduWQHmvbUa7qIwtCtG6LRJoTwLnKJQFng3+h7fOTTMcY1+fp3kJu68A5y47sBTuHl+aA/HmP8NOolhPAJ4K/IzYaxBWgCjgUuJTen863Am2KM7d2OeSO5G65W4FvAbuD15GZwuBn4gyFcCKgshBA2AEvIrbD8/X7q3IHX9QHlr8U35r+dDryG3JO5Dfl9u2KMf9Gj/qCu3RDC54Bryf0f3ExuIbA/JDcn/QdijF9iDBjMex1CWE1utdldwP9H34mwd3R/ChtCiOSGudxLbkjMRHKJzieTm8XnTTHGnxbxRxqRBvk+38EhfEZ4TecM9vMjf8wE4FkgBcw6yANMr+liiSNg2We/RsYXudl04kG+7uhW/93AD8hNK7aP3JOQZ8jNonFuqX+ekfxFbrq8b5KbNeolcgsdvQD8jNyaFKGf484hF0A0Ai3Ag+SeXCVK/TON9C/ghPw1/PsDvV9e1wN6Lw/2WfF0H8cM+toF3kXuD/1+coH0OuB1pf75R+p7Te6m9WCf4Z/ocf7/l39fnyUXxDXnP5e+BDSU+ucfoe/zIX9GeE0f8ufH+/Jl3xzA+b2mi/RlT4IkSZKkAuYkSJIkSSpgkCBJkiSpgEGCJEmSpAIGCZIkSZIKGCRIkiRJKmCQIEmSJKmAQYIkSZKkAgYJkiRJkgoYJEiSJEkqYJAgSZIkqYBBgiRJkqQCBgmSpBElhHB+CCGGED4xxK9zTP511gzl60jSaGSQIEljXAghEUJ4TwhhXQhhdwghHUJ4PoTwQAjhP0IIry91G4dTCGFNPng4ptRtkaRSSZa6AZKk0gkhJIAfABcDLwE/BLYBk4FjgT8Cjge+N4zN+hVwArBriF9ne/519gzx60jSqGOQIElj29vIBQi/BZbGGAtumEMItcAZw9mgGGMz8LtheJ30cLyOJI1GDjeSpLHt7Px2Tc8AAXI37DHG23vuDyG8LYRwewihMYTQGkJ4NITwsRBCVR91YwjhjhDC1BDCDSGEHSGEthDCwyGEK/qo329OQgjhuBDC10II20MI7SGEZ/PfH9dH3U/kz3N+COGPQgj3hBD2hRCezpf3ykkIIUTgXflvt+TLY7dj7g4hZPsbihRC+It8/ev6Kpek0cKeBEka217Mb+cN9IAQwo3AleSGJa0lN0zpTOBTwIUhhItijJkeh00C7gTagZuBauAtwH+GEDpijP81gNddDPwcqCM3/OkRckOh3g68IYRwYYzx130ceh1wEfB94HZg4gFe5pPAG4FTgX/N/2x02/5/wH8B7wE+2sfxVwFt+TqSNGoZJEjS2LYWWAW8N4RQB9wC3Bdj3NpX5RDCSnIBwi3A22OMLd3KPgH8LfB+cjfY3Z0K3AhcE2PM5ut/Hngg//oHvKkOIQTga8AE4I9jjF/vVvaHwLeAm0IIJ8YYO3ocfgFwVozx/gO9BkCM8RP5XoJTgS/EGJ/uUeXbwL8AV4YQPpEfstTZjvOB+cA3YoxDnU8hSUPK4UaSNIblb5z/GHguv/1f4OkQwoshhFtCCJf1OOTPgAxwZfcAIe9T5Hom3t7HSzUD13YGCPnXfoRc78IJ+QDlQM4m12twV/cAIX+ebwMbyd2gL+nj2BsGEiAMRIyxDVgNTAd6zvp0TX57fTFeS5JKyZ4ESRrjYozfCSHcAiwjd5O9ML99I/DGEMLXgJVADbkn7LuAD+Ue7vfSRm7GoJ6eiDHu7WP/7/PbSUDTAZq5KL+9rZ/y27q1fX2Psl8d4LyH4t/JDWG6hlxQRQhhKvAm4NEYY8/Xl6RRxyBBktQ5089P81+dU6O+GfhP4J3khhfdCwRgGrlhRYPxUj/7O3MXEgc5vjOPYEc/5Z37J/VRtvMg5x6UGOPmEMJPgNeEEI6NMT5FLoiqwl4ESWXC4UaSpF5ijNkY43eAz+d3XcDL6wncH2MMB/oagiZ1vvb0fspn9KjXXSx+c/h3cgHTe/LfXwW0ksubkKRRzyBBknQgnUOAQoxxH/AwcFIIYfIwt6Mzp+D8fso7928qwmt15k0cqHfjB8AzwBUhhOXk8iG+E2NsLMLrS1LJGSRI0hiWX+/gohBCr78HIYTpvPykvHOc/b8AleSmLp3UxzH1IYRFPfcXwZ3AY8CSEMJberzmW4DzgMfJJTAfrs5pYY/ur0J+BqUbgCPIDckC+EoRXluSRgRzEiRpbDuD3IxFO0MIG4Et+f1zgUvJJSv/H7m1DYgx/mcI4TTgT4Cn8mPznwEm5485j9zsP+8tZiNjjDGE8C7gZ8C3Qwj/R2615PnkEqybgHf2Mf3pofgF8GHgqyGEm4F9wEsxxi/1qPcfwN8As4AHY4x3FeG1JWlEMEiQpLHtc8ATwKuBU4DXkFvo7EXgDuAb5Ob97xrXH2N8fwjhR+QCgVeTSxbeTS5Y+H/ATUPR0BjjPfkF1T6Wf93LyM209E3gUzHGx4r0Oj/Jr5j8HuDPyfWcbAW+1KPecyGEW8kFKSYsSyorodvnviRJGqD8EK0ngSOBGf1M8SpJo5I5CZIkHZq3kBti9TUDBEnlxp4ESZIGIYTwV+RyMK4mN2z3pBjj1tK2SpKKyyBBkqRBCCFEIA08Anw4xvizEjdJkorOIEGSJElSAXMSJEmSJBUwSJAkSZJUwCBBkiRJUgGDBEmSJEkFDBIkSZIkFTBIkCRJklTAIEGSJElSAYMESZIkSQUMEiRJkiQVMEiQJEmSVMAgQZIkSVIBgwRJkiRJBQwSJEmSJBX4/wGP6EwtKPucXgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 261, "width": 388 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mod_seniority = smf.ols(data = df_income, formula = \"Income ~ Seniority\").fit()\n", "sns.scatterplot(x = df_income['Seniority'], y = df_income['Income'])\n", "sns.lineplot(x = df_income['Seniority'], y = mod_seniority.predict(), linestyle = \"dotted\")" ] }, { "cell_type": "markdown", "id": "6acc49ab", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Solution (2)" ] }, { "cell_type": "code", "execution_count": 14, "id": "9e212835", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Real values: $Y$')" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwkAAAIRCAYAAAABafHOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAABslUlEQVR4nO3deXxU933v/9dHM6MVISR2BIjFBu+2wHjHmCxu9oUmrZsVu47ddE3ttm6bpM29XZPe3ixNb2qnvtDEaZ3WwblJfqkTpyYYbGNjROx6NxbIgNklkNCMNNvn98eMsEYLGomRRjPzfj4e8zia8/2eOZ8Rh9F8znczd0dERERERKRPWb4DEBERERGRyUVJgoiIiIiIZFCSICIiIiIiGZQkiIiIiIhIBiUJIiIiIiKSQUmCiIiIiIhkUJIgIiIiIiIZlCSIiIiIiEgGJQkiIiIiIpJBSYKIiIiIiGRQkiAiIiIiIhmUJIiIiIiISIZgvgMoRWa2B5gK7M1zKCIiIiJSvBYBne6+eLQHKknIj6lVVVUN559/fkO+AxERERGR4vTiiy8SiUTGdKyShPzYe/755zfs3Lkz33GIiIiISJFauXIlLS0te8dyrMYkiIiIiIhIBiUJIiIiIiKSQUmCiIiIiIhkUJIgIiIiIiIZlCSIiIiIiEgGJQkiIiIiIpJBSYKIiIiIiGRQkiAiIiIiIhmUJIiIiIiISAYlCSIiIiIikkFJgoiIiIiIZCi4JMHMPmRm/2BmW82s08zczO4b4ZhrzOzHZtZuZmEze9bMPmNmgTMc80kze8rMTpnZSTP7uZm9J/fvSEREZGThaJxINEEskSQSTRCOxvMdkogUsWC+AxiDzwGXAqeA/cB5Z6psZu8Hvgf0AN8F2oH3Al8GrgU+PMQx/wu4M/363wTKgZuAH5rZ77j713P1ZkRERM4kEkvQFYlx96OtbGrZT0c4Rn11iHUr5nP7miXUVoaoCg17z0tEZEwKriUB+H1gGTAV+PSZKprZVFJf8hPADe7+6+7+h8BlwBPAh8zspgHHXEMqQXgNuMTdf9/dfwtYSSrB+F9mtiin70hERGQIkViClrYOVn9pM/du20NHOAZARzjGvdv2sPqLm9nV1kEklshzpCJSbAouSXD3ze7+qrt7FtU/BMwE7nf3p/u9Rg+pFgkYnGj8Rnr7V+7e0e+YvcA/AhXAzWMMX0REJGtdPTFu2biD3nhyyPLeeJKbN+6gqyc2wZGJSLEruCRhlN6S3j40RNmjQBi4xswqsjzmPwfUERERGRfhaJy7t7QOmyD06Y0nuWdLKxGNURCRHCr2JGF5evvKwAJ3jwN7SI3LWAJgZjVAI3DK3Q8O8XqvprfLsjm5me0c6sEI4yhEREQMY1PL/qzqbtp1ALDxDUhERi2ZdHa2tXOksyffoYxaIQ5cHo269PbkMOV9+6eNsb6IiMi4CAbs9BiEkbR3RwkGlCRIqgXKMIIBI55wHKe6vNi/7k1O7s73f3GAtuNhZk2t4KZVCwmUFc7/01K/avr+pbIZ39BfVvXdfeWQJ021JqwY5TlFRKSExBNOfXUoq0ShoaaceMLRJEelS7NgTT5mxrLZtbQdD3Oks5cX3ujk4vl1Ix84SRR7d6O+O//D/YtMHVBvpPojtTSIiIjkhOOsWzE/q7rrmhsZ/f0uKRaaBWvyunDeVJbMrOHac2ZwwbypIx8wiRR7kvByejtoDIGZBYHFQBxoBXD3buAAMMXM5g7xeuemt4PGOIiIiORSdXmQ29csoSJ45j/VFcEybluzhCp1KSlZmgUr/6LxJNtePUZ3b+YEAmbG+y6dxxWLGwqqqxEUf5LwSHr7jiHKrgeqgcfdvTfLY945oI6IiMi4qa0MsWH9qmEThYpgGRvWr6K2MjTBkclkoVmw8m9/R5j7trexY287P3/56KBys8JKDvoUe5LwAHAMuMnMLu/baWaVwF+mn35jwDH/lN5+1szq+x2zCPgtoBfYMF4Bi4iI9KkKBWhuqmfrXWu59brFNNSUA6kxCLdet5itd62lualefc1LmGbByr9E0jkZSbXSvHK4i/0d4TxHlBsF1zZpZh8APpB+Oie9vdrMNqZ/PubufwDg7p1m9ilSycLPzex+Uqsmv4/U9KgPAN/t//ru/riZ/W/gDuBZM3sAKAd+FWgAfie9sJqIiMi4qwoFqAoFuOPGZdx54/LTs9aAq4uRaBasSaBpeg0XzpvK7qOnWLNsJo3TqvIdUk4U4qfLZcAnB+xbkn4AtAF/0Ffg7t83szXAZ4FfBiqB3aSSgK8NtXKzu99pZs8Cvw3cBiSBFuDv3P1HOX03IiIiWeg/jaUaDqSPZsGaWOFonFjcqavO7OJ3/bKZXHvODGoqCvGr9dAK7p24+xeAL4zymMeAd43ymH8B/mU0x4iIiIhMpL5ZsO7dtmfEupoFa+zcnZcOdfHzl4/SUBPiwysXUNZvIHJlEWZexT4mQURERKRoaRasidEZifPwC4fpiSV440QPz+w/ke+Qxp2SBBEREZECplmwxl9ddYhVixoAmFoVOj2JQDFTOikiIiJSwPrPgnXPllY27TpAe3eUhppy1jU3cptWXB61ZNIzuhMBXLG4gTKD5oX1lI/QclMMlCSIiIjIpBCOxjHs9AxOjmcM2JbhaRas3EgmnZ2vd/DSwU5uumIhocCbyUCgzLhyyfQ8RjexdNWIiIhIXkViCboiMe5+tJVNLfvpCMeorw6xbsV8btdd8FHRLFhj5+48uOsAr7en1jl44rXjXL9sZp6jyp/ibysRERGRSSsSS9DS1sHqL23m3m17Tk/l2RGOce+2Paz+4mZ2tXUQiSXyHKkUOzNj+Zza088PnIiQSJbubFBKEkRERCRvunpi3LJxB73x5JDlvfEkN2/cQVdPdguGiZyNC+dNZcnMGq47dwa/evkCAmWlu/ickgQRERHJi3A0zt1bWodNEPr0xpPcs6WVSDQ+QZFJsYvGk2x99SjdvZnXlJnxvkvnsWpRw6CBy6VGSYKIiIjkhWFsatmfVd1Nuw4Apf2lTXJjX3uYb29v4+m9HWx++cigcjNdZ6AkQURERPIkGLDTYxBG0t4dJRjQlzc5e+7QGUldd68ePsX+jnCeI5qclCSIiIhIXsQTTn11dgt8NdSUp6f0FDk7C6dXc1FjHZWhAL904Rwap1XlO6RJSUmCiIiI5IXjrFsxP6u665obASUJMjrdvXFODtFatfrcGXzi6iYumDdV3YuGoSRBRERE8qK6PMjta5ZQMcLqtRXBMm5bs0SLgknW3J3n3zjJt55o4z+fO0hywFSmlaEANRW6ns5ESYKIiIjkTW1liA3rVw2bKFQEy9iwfhW1ldl1SxIB6IzE+a8Xj9ATS3DwZA+/2H8i3yEVHCUJIiIikjdVoQDNTfVsvWstt163mIaaciA1BuHW6xaz9a61NDfVa8VlGZW66hCrFjUAMLUqxIyaijxHVHjUziIiIiJ5VRUKUBUKcMeNy7jzxuUEA5YepOzqYiRZSSR90MJnVyxuIFBmXLZgGuUjdGmTwfQ/T0RERCaF6n4JgRoOJBuJpLOzrYOXDnVy06qFGclAoMy4YnFDHqMrbEqrRERERKTguDvf33WAx3Yf4/ipKE+0Hs93SEVFSYKIiIiIFBwz47y5taefv3EiQiKpaXJzRd2NRERERKQgXTB3Kq8d7aZxWiXNC+opK9OaB7miJEFEREREJrXeeIInW9tZ2VSfsb6BmfHeS+ZqQbRxoCRBRESkyISjcQw7PUuQ4xmDgkUKyb72MD95/hBdPXE6e2K855J5GeVKEMaHPjFERESKRCSWoCsS4+5HW9nUsp+OcIz66hDrVszn9jVLqK0Mab0BKTju0NUTB+DVw6fY3xFmfn11nqMqfhq4LCIiUgQisQQtbR2s/tJm7t22h45wDICOcIx7t+1h9Rc3s6utg0gskedIRUZn4fRqLmqso6o8wDsvnkPjtKp8h1QSlCSIiIgUga6eGLds3EFvPDlkeW88yc0bd9DVE5vgyESyd6o3zolwdND+1efO4BNXN3HenKnqXjRBlCSIiIgUuHA0zt1bWodNEPr0xpPcs6WVSDQ+QZGJZMfdee7ASb71xF4eeu4QyQFTmVaGAhpXM8GUJIiIiBQ4w9jUsj+rupt2HQB0J1Yml85InEdeOkJvLMnBkz38Yv+JfIdU8pQkiIiIFLhgwE6PQRhJe3eUYEBJgkwuddUhrljckPq5KsTMKRV5jkjUbiMiIlLg4gmnvjqUVaLQUFNOPOFokiPJp0TSCQxY+GzVogaCZcalC6YRCug+dr7pX0BERKTAOc66FfOzqruuuRHwEetJ9sLROJFoglgiSSSaIKwxH8NKJJ0nW49z3/Y2ogPG0ATKjMsXNShBmCTUkiAiIlLgqsuD3L5mCfdtbzvj4OWKYBm3rVlClQaA5oTWpRgdd+fBXQfY1x4G4PHXjnHD8ll5jkqGo1RNRESkCNRWhtiwfhUVwaH/tFcEy9iwfhW1laEJjqw4aV2K0TMzzp9be/r5oZM9JJJq1ZqslCSIiIgUgapQgOamerbetZZbr1tMQ005kBqDcOt1i9l611qam+p1ZztHtC7F2FwwdyrnzJrC9ctm8iuXLxg0LkEmD7U3iohIyQhH4xhGMGDEE47jRTX3elUoQFUowB03LuPOG5effp/g6mKUQ6Ndl+LOG5eV3O+/N57gideOc/miBqZUvPnezYz3XDJXC6IVgNK6YkVEpCSVWt/x/olPEb2tSWO061LceePycY5ocnn9eJifvnCIrp44XT1x3nvpvIxyJQiFQd2NRESkqKnvuOSa1qU4MzPo6knN8LT7yCn2d4TzHJGMhZIEEREpauo7LrnWty5FNvrWpSglCxqqubixjuryAO+6eC6N06ryHZKMgZIEEREpWqPtOx7R/PaSBa1L8aZTvXFOhKOD9l937gw+cfUils+pVfeiAqUkQUREitZo+45D5pcZLZIlQ+lbl2K46Wb7FPO6FO7OcwdO8q0n9vKfzx0iOWAq08pQgKpyDYgpZMV31YqIiKSNte94qQ10ltHrW5fi5mG6shX7uhSdkTiPvHSERNI5dLKHXftOsLKpPt9hSQ6pJUFERIrWWPqOa6CzZKPU16Woqw5x5eIGAKZVh5hVW5HniCTX1JIgIiJFq6/v+L3b9oxYd11zI2ZOZ088q4HOW+9aW7RfACU7pbQuRSLpgxY+u3xRA8GAccn8aYQCuu9cbPQvKiIiRWu0fceTjgY6y6hVlwepKg8QCpRRVR4oqgQhkXS2tx7n20/sJTrg/0WgzFjZ1KAEoUjpX1VERIpaX9/x4RKF/n3Hz3ags0wsDSwfX+7Oppb9PPHacTrCMR5/7Vi+Q5IJVDyproiIyBD69x2/Z0srm3YdoL07SkNNOeuaG7mt30DkWCKpRbIKgAaWTwwz48J5dezviABwuLNnyG5HUpyUJIiISNHLtu9430DnbBKFvoHO+i46sfoGlg8cN9I3sPy+7W1sWL+qqAcNT6Tz59bSeuwU86ZVcdn8aZQpQSgZ6m4kIiIlY6S+41oka/LTCtrjoyeWYPPLRzjVm9lly8x498VzWbGwXglCiVGSICIikqZFsiY3raA9Pl4/Hua+7W384vUTPPLSEdwzk1+tmFyalCSIiIj0M5qBzjKxNLB8fJhBV08qoXrtyCkOnIjkOSKZDJQkiIiI9FPqi2RNZmNdQVvObEFDNRc31lFdHuDdl8ylcVpVvkOSSUDtpCIiIgOU0iJZhUQDy89eV08s9XtMJ799Vi+bwbXnzKCqXL8wSVFLgoiIyDCKeZGsQqSB5WPn7jy7/wTfeqKNh54/RDKZ+bupCAaUIEgGJQkiIiJSEDSwfOw6I3F+/vJRovEkh072sGtfR75DkklOSYKIiIgUDA0sH5u66hBXLm4AoL46xJw6jTuQM1OKLSIiIgVjNCtol7J4IkkwkJlIXb6ogWCgjEvm1xEK6D6xnJmSBBERESkoGlg+vHgiyVN723nlUBcfubKJ8n4tLoEyY2VTfR6jk0JS2v+TREREpGBV90sISrzhAEgNTt606wAHOlLrHDz22jHWLp+V56ikUKmtSURERKQImBkXzas7/fxoZy+JpGZ4krFRS4KIiIhIkTh/bi17jnUzb1olly2YhpkWlJOxUZIgIiIiUmB6YgmeeO04ly+qz5jJycx49yVz8xiZFAslCSIiIiIFpO14Nz99/jCneuN09sR436Xz1GIgOacxCSIiIiIFpMyMU71xAFqPdnPgRCTPEUkxUpIgIiIiUkAWNFRzyfw6aioCvOeSucyvr853SFKE1N1IREREZJLq7IkRTzgNNeUZ+687dwbXnjODSs39KuNESYKIiIjIJOPuPLv/JNt2H6O+upybVi2grOzNcQcVQSUHMr7U3UhERERkkumMxHn0laNE40kOd/awa19HvkOSEqMkQURERGSSqasOceWS6QA01JQzp64qzxFJqVF3IxEREZE8iyeSBAOZ925XNtUTDBiXNNYNKhMZb7riRERERPIknkjy+O5jfHt7G73xREZZoMxYsbBeCYLkha46ERERkTxwdzbtOsCTe9o5EY7x+GvH8x2SyGlKEkRERETywMy4uLHu9PNjXb0kkp7HiETepDEJIiIiInly3pxa9hzrpnFaFZfMr8PMRj5IZAIoSRAREREZZz2xBI+/doxVixqorQyd3m9mvOviuXmMTGRoShJERERExtHeY9389IVDdPcm6OqJ875L56nFQCY9jUkQERERGUeBMqO7NzVzUevRbt442ZPniERGpiRBREREZBwtaKjmkvl1TKkI8t5L59E4TQujyeSn7kYiIiIiOXIyEiORdBpqyjP2X3fuDK49ZwaVoUCeIhMZHSUJIiIiImfJ3fnFvhM8/tpx6qvLuWnVAsrK3hx3UBFUciCFRd2NRERERM5SZyTOtlePEY0nOdzZQ8vrHfkOSeSsKEkQEREROUt11SGuXDIdgOlTymms17gDKWzqbiQiIiIySvFEkmAg817ryqZ6QoHUKsoDy0QKTclcwWb2bjP7qZntN7OImbWa2X+Y2dXD1L/GzH5sZu1mFjazZ83sM2amToUiIiIlKpZIsu3VY3zriTZ644mMskCZ0bywXgmCFIWSuIrN7IvAj4AVwEPAV4EW4P3AY2b2sQH13w88ClwPPAj8I1AOfBm4f+IiFxGRkYSjcSLRBLFEkkg0QTgaz3dIUqTcnQdbDrBjbzsnIzEe33083yGJjJui725kZnOAPwAOA5e4+5F+ZWuBR4D/CdyX3jcV+CaQAG5w96fT+z+frvshM7vJ3ZUsiIjkUSSWoCsS4+5HW9nUsp+OcIz66hDrVszn9jVLqK0MUaXpJiWHzIxLFtRx4EQEgOPdURJJJ1Cm1ZOl+BR9kgA0kWoxebJ/ggDg7pvNrAuY2W/3h9LPv9WXIKTr9pjZ54D/Aj6NWhRERPImEkvQ0tbBLRt30BtPnt7fEY5x77Y93Le9jQ3rV9HcVK9EQXJq+exa9hztprG+iosb6zBTgiDFqRS6G70KRIErzGxG/wIzux6oBX7Wb/db0tuHhnitR4EwcI2ZVYxDrCIikoWuntigBKG/3niSmzfuoKsnNsGRSbGIRBP87IXDg64hM+OdF8/lkvnTlCBIUSv6lgR3bzezu4D/DbxgZt8HjgNLgfcBDwO39ztkeXr7yhCvFTezPcCFwBLgxTOd28x2DlN03mjeg4iIvCkcjXP3ltZhE4Q+vfEk92xp5c4bl1FVXvR/7iSH9h7r5ifPHyIcTdAdjfO+S+cpIZCSUwotCbj7V4B1pJKiTwF/DHwY2AdsHNANqS69PTnMy/Xtn5bzQEVkwmiwa+EyjE0t+7Oqu2nXAUBf7mR0ggEjHE3NXNR6tJs3TvbkOaLs6bNNcqUkbq2Y2R8Bfw18Dfg6cIjU3fy/Ab5jZpe5+x9l+3LprY9U0d1XDhPPTlIzLYnIBNNg18IXDBgd4ey6EbV3RwkGlCTI6Myvr+bSBXW0Hu1m7XmzaJw2+RdG02eb5FrRJwlmdgPwReBBd7+jX1GLmX2QVLeiO83sn9y9lTdbCuoY2tT0driWBhGZpDTYtTjEE059dSirRKGhppx4wtE/pwznZDhGPJlk+pTMoYbXnjODa5bOoLIALh59tsl4KIXuRu9JbzcPLHD3MPAUqd9Dc3r3y+ntsoH1zSwILAbiQGvOIxWRcaXBrsXBcdatmJ9V3XXNjWTR8CslKJl0Wl7v4Nvb9/LQ84dIJjOvk4pgoCASBNBnm4yPUkgS+m4NzBymvG9/NL19JL19xxB1rweqgcfdvTc34YnIRBjtYNeI+vFOWtXlQW5fs4SK4Jn/hFUEy7htzRINWpYhdfXEeezVY8QSzpHOXlpe78h3SGOizzYZL6WQJGxNb28zs8b+BWb2TuBaoAd4PL37AeAYcJOZXd6vbiXwl+mn3xjXiEUk5zTYtbjUVobYsH7VsIlCRbCMDetXUVsZmuDIpFDUVYe4aul0AGZMKWd+fXWeIxobfbbJeCmF2ysPkFoH4W3Ai2b2IKmBy+eT6opkwB+7+3EAd+80s0+lj/u5md0PtJOaLnV5ev93J/xdiMhZ0WDX4lIVCtDcVM/Wu9Zyz5ZWNu06QHt3lIaactY1N3KbBmrKALFEklAgM6lcubCe8kAZFzXWFeyqyfpsk/FS9EmCuyfN7F3AbwE3AR8k1WWoHfgx8DV3/+mAY75vZmuAzwK/DFQCu4E70vXVwVWkwGiwa/GpCgWoCgW448Zl3HnjcoIBI55wwNXFSE6LJZJsbz3Oq4dP8dGrFlIRfPM/dlmZcemCafkLLgf02SbjpRS6G+HuMXf/irtf5e5T3T3o7rPc/T0DE4R+xzzm7u9y93p3r3L3i939y+6emOj4ReTsabBr8aouD1JVHiAUKKOqPKAEQU5zdza17OfpvR2cjMR4bPexfIeUc/psk/FSEkmCiIgGu4qUHrPMloKO7hiJZHF9SdZnm4wXJQkiUjI02FWk9CyfXcv5c2t5+wWzWbeisWDHHpyJPttkPChJEJGS0X+w663XLaahphxI9dO99brFbL1rrRYbEilQkWiCh184PGgtADPjHRfN5aLGOsyKL0EAfbbJ+DCNwZ14ZrZzxYoVK3bu3JnvUERKVjgaxzANdhUpAq1HT/HTFw4TiSZYMrOG9106r2gTgpHos036W7lyJS0tLS3uvnK0x+qqEZGSVN3vj6ZurokUtvJgGZFoal6R1qPdvHGyh8ZpVXmOKj/02Sa5ou5GIiIiUtDm11dz6YI6aiuDfKC5sWQTBJFcUkuCiIiIFIwT4SiJpDN9SkXG/uvOmcm158zIWAdBRMZOSYKIiIhMesmks2vfCZ547Rj1NeXctGphxkxF5SNMASoio6P/USIiIjLpdfXEeXz3MWIJ50hnLzvbOvIdkkhRU5IgIiIik15ddYirl04HYEZtBU3Tq/MckUhxU3cjERERmXRiiSShQOa9zBUL6ykPlnHhvLqiXBRNZDJRkiAiIpIjA+eodzxjSsqx1i0lsUSSx187zu4jp/jYVQszBiKXlRmXzJ+Wv+BESog+jURERM5SJJagKxLj7kdb2dSyn45wjPrqEOtWzOf2NUuorQydXu12NHVLjbvzvZ37OXiyB4DHdh/jLefNznNUIqVJYxJERETOQiSWoKWtg9Vf2sy92/bQEY4B0BGOce+2Paz+4mZ2tXUQiSVGVbcUmRnNC+tPPz8RjpFIeh4jEildShJERETOQldPjFs27qA3nhyyvDee5OaNO4hE41nX7eqJjWfIk9qy2VM4f+5U3n7BbD7Y3KixByJ5oiRBRERkjMLROHdvaR32S3+f3niS3UdOZV33ni2tRKLxXIY66YSjcX76/CE6ByREZsY7LprDRY11mClBEMkXJQkiIiJjZBibWvZnVXfJjClZ19206wBQvF+QW4+e4ltPtPH8G51sfukI7upSJDLZKEkQEREZo2DATo8rGElNRTDruu3dUYKB4k0SKkIBetLjLlqPdp8eqCwik4eSBBERkTGKJ5z66lBWdbt741nXbagpJ54o3rvrjdOquHT+NGorg3ywuZF506ryHZKIDKAkQUREZIwcZ92K+VnVbT12Kuu665obgeJIEjq6oxw71Tto/7XnzODjVzexaEZNHqISkZEoSRARERmj6vIgt69ZQkXwzH9OK4JlnDNrStZ1b1uzhKoCX1gtmXSe3tvOfdvbeOi5Q4OmMi0PlmUslCYik4uSBBERkbNQWxliw/pVw375rwiWsWH9KqrKg1nXra3MrlvSZNbVE+eJ144TTzpHu3rZ2daR75BEZBSUJIiIiJyFqlCA5qZ6tt61lluvW0xDTTmQGldw63WL2XrXWpqb6qkKBUZVt9DVVYe4eul0AGbWVrBoenWeIxKR0TBNOzbxzGznihUrVuzcuTPfoYiIyBmEo3EMIxgw4gnHcarP0A1oYH3wYbsNjaZuIYjGk5QPaCFJJp0XDnZy/typWhRNJA9WrlxJS0tLi7uvHO2xY/40MrOl7v7aWI8XERGZrCKxBF2RGHc/2sqmlv10hGPUV4dYt2I+t69ZQm1laMi7/f0TiJEaA0ZTdzKLxpM8/toxdh85xcevbsoYZ1BWZlzUWJfH6ERkrM6mu9FjZrYiZ5GIiIhMApFYgpa2DlZ/aTP3bttzem2DjnCMe7ftYfUXN7OrrYNIep7/UububGrZz67XT9DVE2fbq8fyHZKI5MjZJAk1wGYze3uughERmYzC0TiRaIJYIkkkmiAcjec7JBlHXT0xbtm4g954csjy3niSmzfuoKsnu4XRipmZ0byw/vTzzp7YoFmMRKQwnU3nxxuAHwM/MrNb3P07uQlJRGRyGGuXEylc4Wicu7e0Dpsg9OmNJ7lnSyt33risoMcR5MKy2VPYe3wq8+uruGDuVMw09kCkGIy5JcHddwLXAvuBb5nZnTmLSkQkz9TlpDQZxqaW/VnV3bTrAFA6X4i7e+M89NwhOge0oJgZv3ThHC6cV6cEQaSInNUUqO6+G7gaeAb4kpn9fU6iEhHJM3U5KU3BgJ1OCEfS3h0lGCiNL8WvHT3Ft55o48WDnTzy4hE0M6JI8TvrdRLc/QhwPbAZ+H0z+46ZlXbbq4gUtNF2OYlojELRiCec+ursFjJrqClPT11a/CpDAXrjqVazPce6OXiyJ88Rich4y8liau5+CngnsAm4CXjNzP7dzP7IzN5iZpr/TEQKhrqclC7HWbdiflZ11zU3AqWRJDROq+LSBdOYWhVi3YpG5k2ryndIIjLOcnLH38wagN8D1pL6a7kg/fjlfnVagR3u/pFcnFNEZLyoy0npqi4PcvuaJdy3ve2MLUkVwTJuW7OkKActt3dHSbozY0pFxv5rl87g2qUzBi2YJiLF6az+p5vZPDP730Ab8Pn07j8HlgPrgL8GfgocB5YCv3o25xMRmQjqclLaaitDbFi/iophvgxXBMvYsH4VtZXZXSOFIpl0duxt5zvb23jouUODpjItD5YpQcgRTassheBsVly+B/g4UAF0AF8CvuLuXekqrwLf71d/ITDqJaFFRCZaX5eTe7ftGbFuKXU5KRVVoQDNTfVsvWst92xpZdOuA7R3R2moKWddcyO3Fen0t109cba/dpx40jna1cvOtg6uWNyQ77CKiqZVlkJiY52hwMySpJKDLwNf7ZccyAjMbOeKFStW7Ny5M9+hiMgwjnT1sPqLm0fscrL1rrXMqq2cwMhkIoWjcQwjGLB0i5EXZRejPjvb2nn0lWPMmlrB2y+YrWs7h/qmVR5u1rS+FqrmpnolCpIzK1eupKWlpcXdR32j/mzaDf8MWOTuf6kEQUSKTal2OZFM1eVBqsoDhAJlVJUHiipB6JutqL/mBfW8/YLZ/NqqhUoQckzTKkuhOZvF1JQciEjR6t/l5NbrFtNQUw6kxiDcet1itt61Vnf8pCBF40k2v3yEbz/RRs+AxQDLyoyLGusoK9Ng/FzStMpSiIrnloiISI5VhQJUhQLcceMy7rxxecl0OZHi5e58r2U/h9LrHDy2+xhvPX92nqMqfqOdVvnOG5ePc0QiI9M0BSIiIyjmLidSWsyMlU31p5939cQHzWIkuadplaUQ6S+diIhICTl31hQuaqxjfn0V582pxUxfSMdb37TK2SQKfdMqqyej5JtaEkRERIpQd2+ch547SOeAgbBmxtsvmM35c6cqQZggWslbCpGSBBERkSKz+8gpvvVEGy8e7OKRF48w1unOJTf6VvIebra0PsW8krcUHiUJIlKStOKpFLPq8sDpKU73HOvmYHqgsuSPplWWQqNUVURKilY8lVIwb1oVly6Yxp6j3bzt/NnMm1aV75BKXqmu5C2Fa8wrLsvYacVlkfzQiqdSjNq7oySSzszaioz90fQ1Xj5CFxeZeKW2krfkT75WXM5gZp9IP2qHKJvaV56r84mIjJZWPJVikkg6T+1p577tbfzk+UODpjItD5YpQZikNK2yFIJcfnpsBDYAc4com9uvXERkwmnFUyk2p3riPLXnOImkc7Srl6f3tuc7JBEpIrlMEr6Vfpwcouxkv3IRkQk32hVPQVNDyuRWVx3i6qXTAZg9tZIlM6fkOSIRKSY5a99y9/VnKDsEDFsuIjLetOKpFLreeIKKYOZYmeYF9VSGApw/ZyplZbpmRSR31FlRREpC34qn2ehb8VRkMkyV2xtP8MhLh/n2E230xBIZZWVlxoXz6pQgiEjOjetIGTObAawGwsDP3D0xwiEiIuOib8XTe7ftGbGuVjyVyTJVrruzqeUAh9LrHGx79Rhvu2D2uJ9XRCQnLQlm9mkze9LMGvrtWwm8CDwA/Bh43MxqcnE+EZHR0oqnkq2+qXJXf2kz927bc7qbWkc4xr3b9rD6i5vZ1dZBJDb+973MjJVN9aefd0fjJJNKYEVk/OWqu9GvAu7u/adW+DugntSMRj8GVgG/kaPziYiMmlY8lWxMtqlyz501hYsa63jnxXN436Xz1LVIRCZErpKEc4Fn+56kuxmtAe5191vd/b3ADuAjOTqfiMio9V/x9NbrFtNQUw6kxiDcet1itt61Vguplbh8TpV7qjfOf/73QU5GMpMPM+PtF8zmvDlTMVOCICITI1ft6dOBI/2eX5vePthv31Y0w5GI5FlVKEBVKMAdNy7jzhuXa8VTyTDaqXLvvHF5Ts67+0gXP33hML2xJD3xBB+4rFEJgYjkVa7+IrYDM/o9XwMkgcf77XOgMkfnExE5K9X9EgI1HEiffE2VW10eJJpuvdh7LMzBkz3Mm1aVk9cWERmLXHU3ehF4r5lNN7NppMYo7HD3zn51FgGHcnQ+ERGRnMvXVLnzplVx2YJpTKsO8aGV85UgiEje5SpJ+CowF9gP7APmAP+nr9DMAsB1wDM5Op+IiEjO9U2Vm42xTpV7/FQvR7t6B+2/9pwZfOyqJhY0VI/6NUVEci0nSYK7/4DUzEXPAy8Df+Du9/Wr8jZSXY1+kovziYiIjIfxnCo3kXS2tx7nO0++zkPPHyIxYCrTUKCMUEBrnIrI5JCzTyN3v8fdL08/vjyg7CfuXu/u9+TqfCIiIuNhvKbKPdUT5+m97SSSzrGuXp7e2z7yQSIieaJbFiIiIv2M11S5ddUhrl6amuNjTl0lS2dNyXnsIiK5kvP5/tKrKi8Dprj71ly/voiIyHjLxVS5PbEElQMSieYF06gKBThvTq0WRRORSS1nLQlmNt/Mvgd0AE8Dm/uVXWdmL5jZDbk6n4iIyHirLg9SVR4gFCijqjyQVYLQG0/wXy8e5r7tbfTEEhllZWXGBfOmKkEQkUkvJ0mCmc0FngTeD/wIeALo/wn4JDCL1NSoIiIiRcnd+d7OAzy7/yRdPXG2vXos3yGJiIxJrloS/pxUEvA2d18HPNy/0N1jpFZcvnaIY0VERIqCmbFqUf3p5+FYgmQyN2spiIhMpFyNSXgX8AN3//kZ6rwOrM7R+URERCalc2fXcsn8MAsaqjl31hTM1LVIRApPrloSZgOvjlAnBtTk6HwiIiJ51dUT48f/fZCTkdigsreeP5tls2uVIIhIwcpVS0I7sGCEOsuAQzk6n4iISN68eriLn75wmGg8SW88wQcua1RCICJFJVctCY8B7zOzOUMVmtm5wDvoN+ORiIhIoZpSGSSWSAKw91iYQ509eY5IRCS3cpUk/B1QCWwxs3cC1ZBaMyH9/IdAEvj7HJ1PREQkb+bWVXHZgmnUV4f48OXzmVtXle+QRERyKifdjdz9STO7DfgnUlOg9ulMb+PALe7+fC7OJyIiMlGOneol6c6s2sqM/deeM4Nrz5lBKJCzJYdERCaNnK247O4bzGwb8JvAVcB04CSwHfi6u7+cq3OJiIiMt0TSeWpPOzv2tlNfU85HrlhIoN8iaEoORKSY5SxJAHD3V4Hfz+VrioiI5MOp3jg729pJJJ1jXb3s2NvOVUum5zssEZEJodsgIiIiQ6irCnHNOTMAmDetknNnTclzRCIiEycnLQlm1pplVXf3pbk4p4iISC71xBJUhgIZ+y6bP43q8gDLZtVSVqYpTkWkdOSqJaEMsCEe04BF6Ud5Ds8nIiKSEz2xBD974TDffqKNnlgio6yszDhvzlQlCCJScnI1u9Gi4crM7Bzga6RWW/6lXJxPREQkF9ydTS0HOJxe52Drq8d4+wWz8xyViEj+jfudfXffDawDGoE/H+/ziYiIZMvMWLWo/vTznliCZNLzGJGIyOSQ09mNhuPuPWb2MPBrwJ9MxDlFRESyce7sWi6ZH2ZhQzXnzJqCmboWiYhM5BiBODBnAs8nIiJyWmdPjB89+wYnI7FBZW89fzbnzq5VgiAikjYhSYKZzQA+COybiPOdIY7VZvY9MztoZr3p7U/N7F1D1L3GzH5sZu1mFjazZ83sM2YWGOq1RURk8nrlcBfffqKNVw+f4r9ePIy7uhSJiJxJrqZA/bMzvP4C4P1AHXnsamRmnwP+AjgG/Ag4CMwAmoEbgB/3q/t+4HtAD/BdoB14L/Bl4FrgwxMYuoiInKXayiCxRBKA19vDHOrsYW5dVZ6jEhGZvHI1JuELI5R3An/p7l/K0flGxcw+TCpB+Bmwzt27BpSH+v08FfgmkABucPen0/s/DzwCfMjMbnL3+ycqfhEROTtz66poXljP3mPdvO2C2UoQRERGkKskYe0w+5NAB/CSu8dzdK5RMbMy4ItAGPjIwAQBwN37d1D9EDAT+FZfgpCu05Nujfgv4NOAkgQRkUnoaFcvjjOrtjJj/zVLp3Pt0ukEA1qyR0RkJLlaJ2FLLl5nnFwDLAYeADrM7N3ARaS6Ej3l7k8MqP+W9PahIV7rUVLJxjVmVuHuveMUs4iIjFI8keSpve3s2NNBQ02Ij1zZRKDfImghJQciIlmbkClQ82xVensYaAEu7l9oZo8CH3L3o+ldy9PbVwa+kLvHzWwPcCGwBHjxTCc2s53DFJ2XXegiIpKt7miClrYOku4cOxVlx952rloyPd9hiYgUpFK4rTIrvf0NoAp4G1BLqjXhJ8D1wH/0q1+X3p4c5vX69k/LaZQiInJW6qpCXHPODAAap1WxbHZtniMSESlcY2pJMLP/O8bzubv/+hiPHau+KUuNVIvBM+nnz5vZB0m1GKwxs6uH6Ho0lL626xHnz3P3lUO+QKqFYUUW5xIRkWH0xBJUhjJnpb5s/jRqyoMsm61F0UREzsZYuxutH+NxDkx0ktCR3rb2SxBSwbhHzOwn6ZiuAJ7gzZaCOoY2Nb0drqVBRETGUU8swaOvHKXteJiPX92UkSiUlRnL56gFQUTkbI01SVic0yjG18vp7YlhyvuSiL758F4GLgeWARljCswsSOq9x4HWnEYpIiIjcne+17KfI52peSMefeUoN144J89RiYgUnzElCe7elutAxtGjpL7Un2tm5e4eHVB+UXq7N719BPgo8A7g3wbUvR6oBh7VzEYiIhPPzLhycQM/fOYgALGEk0w6ZWXqWiQikktFP3DZ3Y+RWjW5DshYGdrM3g78EqmuQ31Tnj5AalXmm8zs8n51K4G/TD/9xjiHLSIypHA0TiSaIJZIEokmCEfzsgRNXp0zq5ZLF9Tx3kvn8u5L5ipBEBEZBzmdAtXM5gJvBRqBiiGquLv/RS7PmaU7gCuBz5rZ9cBTQBPwQVIrK3/K3U+kA+w0s0+RShZ+bmb3A+3A+0hNj/oAqaRDRGTCRGIJuiIx7n60lU0t++kIx6ivDrFuxXxuX7OE2soQVQMG8Ra6zp4YW14+yvXnzqSuOpRR9pbzZucpKhGR0pCzJMHM/gfwxwNe03hzFqC+nyc8SXD3I2Z2JfA5UonBVUAX8P8Bf+Pu2wfU/76ZrQE+C/wyUAnsJpVsfM3dR5zZSEQkVyKx1Pz/t2zcQW88eXp/RzjGvdv2cN/2NjasX0VzU33RJAqvHO7i4RcOE40nicaTrFvRqNmKREQmUE66G5nZR4HPA1uBD5FKCP4F+AjwTSAJ3M+bqxlPOHdvd/c73H2xu5e7+3R3f//ABKFf/cfc/V3uXu/uVe5+sbt/2d0TEx27iJS2rp7YoAShv954kps37qCrJzbBkY2fqZUhYonU+93XEeZQZ0+eIxIRKS25GpPwaWA/8A53fzC9b6+73+/uvwG8B/gV3pw+VEREshCOxrl7S+uwCUKf3niSe7a0EimSMQpz6ippXljP9Cnl/MrlC5hbVzXyQSIikjO5ShIuBn7s7v3/Op1u83b3n5Ba3fgPc3Q+EZGSYBibWvZnVXfTrgO8ud5j4TjS2cORIVoKrlk6nY9csZB505QgiIhMtFwlCSHgeL/nEQYvRvYccGmOziciUhKCAaMjnF03ovbuKMFA4SQJ8USSx3Yf49+e2sdPnj9EIpk53CsUKCMYKPpJ+EREJqVcffoeBOb2e/46cMmAOo2k1isQEZEsxRNO/YCZfYbTUFNOPFE48yp0RxP8Yt8Jku4cOxVlx972fIckIiJpuUoSdpHqctTnEWC1mX3czGrM7N2kZgnalaPziYiUBMdZt2J+VnXXNTfy5oRyk19dVYhrlk4HoLG+iuWza/MckYiI9MlVkvAj4EIzW5x+/rekFijbCHQCPyDVUfZzOTqfiEhJqC4PcvuaJVQEz/xxXREs47Y1S6gqz+nyNzkViQ6eHO7S+dN49yVz+fDK+dTXlOchKhERGUpOkgR33+ju1e6+J/18H7CK1MrEPwXuAVYNN92oiIgMr7YyxIb1q4ZNFCqCZWxYv4rayuy6JU20nliCnzx/iG9v30tPLDNRKCszls2u1RoIIiKTzLjdckonDL89Xq8vIlIqqkIBmpvq2XrXWu7Z0sqmXQdo747SUFPOuuZGbpvEKy67O99r2c+Rzl4AHn3lKDdeOCfPUYmIyEhykiSY2TR3P5GL1xIRkcGqQgGqQgHuuHEZd964nGDA0oOUfVJ3MTIzrlw8nR8+8wYA8aSTTDplZWo5EBGZzHL1l+Wgmf2A1CrLD7n7mVf9ERGRManulxBMwoaDIZ0zawqXLZzGgvpqzpk1Jd/hiIhIFnI1cHkv8GHgh8ABM/s7M7v4zIeIiEgxORmJ8YNn3uDkEOs6rF0+SwmCiEgBydXA5fOBK4F/IrWw2p3AL8xsp5n9rpnNyMV5RERkcnr5UBf3bW/jtSOn+NmLh3EvnKlYRURksJwtZenuO9z9t0gtqvZh4P8jtXbCV0i1LnzfzD6Qq/OJiMjkUVcVIpZI9TTd1xHmUGdPniMSEZGzkfP17t095u7fc/f3AfOAO4DngPcBD+T6fCIikn9z6ipZsbCe6VPK+dVVC5hbV5XvkERE5CyM95QYx4HngReBiybgfCIiMs6OpFsJZk2tzNh/zdLpXLN0OsFAzu8/iYjIBBuXL+1mdh7wSeBjpFoTDNhNavYjEREpQLFEkidb29nZ1kF9TYiPXLEwIyFQciAiUjxyliSYWT3wa6SSg8tJJQadwL3ARnd/PFfnEhGRiReOJnhm/wmS7hw/FWXH3g6uXjo932HJJBeOxjHs9NoejmdM5Ssik1OuFlN7AHgPqZmNHPgZsBF40N01ek1EpAjUVYW4Zul0fv7yUebXV3H+3Np8hySTWCSWoCsS4+5HW9nUsp+OcIz66hDrVszn9km8SriIpOQqlV8HvEyqO9G33f1Ajl5XRETyJBJNUFWe+SXusgXTmFIR5JxZUzDTqskytEgsQUtbB7ds3EFv/M31VTvCMe7dtof7trexYf0qmpvqlSiITFK56kB6jbuf7+5/qwRBRKSwRaIJHnruEN/evpeeWCKjzMw4d3atEgQ5o66e2KAEob/eeJKbN+6gq2fwwnsiMjnkajG17bl4HRERyS93Z9Ou/bx4sJPu3gRbXjma75CkwISjce7e0jpsgtCnN57kni2tRKLxCYpMREZDU1GIiMhpZsaVi98cjJxMOsmkVk+W7BnGppb9WdXdtOsAqXlORGSy0fQCIiKS4ZxZU7hs4TSaGqpZMnNKvsORAhMMGB3h7LoRtXdHCQaUJIhMRmpJEBEpUSfDMf7fLw5wcogvdGuXz1KCIGMSTzj11aGs6jbUlBNPqKVKZDJSkiAiUoJeOtTJt7fvpfVoNw+/eBh3fVGT3HCcdSvmZ1V3XXMjqZnTRWSyUZIgIlKCplWVE0+PNdjfEeZwZ2+eI5JiUV0e5PY1S6gInvkrRkWwjNvWLKFKC6uJTEpKEkREStCcukpWNtUzo7aCm1YtZE5dZb5DkiJSWxliw/pVwyYKFcEyNqxfRW1ldt2SRGTiKX0XESlyh072YAazp2YmAlcvmc41S2cQKNPAUcmtqlCA5qZ6tt61lnu2tLJp1wHau6M01JSzrrmR27TissikN6Ykwcz+7xjP5+7+62M8VkRERiGWSPLEa8dpeb2DhppyPnLFQoKBN+/s9v9ZJNeqQgGqQgHuuHEZd964nGDA0oOUXV2MRArAWP+Xrh/jcQ4oSRARmQDhaIL/PnASdzh+KsqOvR1cvXT6yAeK5FB1v4RADQcihWOsScLinEYhIiI5V1cV4pql0/n5y0dZ2FDNBXOn5jskEREpEGNKEty9LdeBiIjI2QlH4xl3bQEuWzCN2sogS2dOwUxjD0REJDvqkCoiUuDC0Tj/+d8HuW97Gz2xREaZmXHOrFolCCIiMio5HTlkZnOBtwKNQMUQVdzd/yKX5xQRKWXuzqaWAxztSq1zsOWVo/zShXPyHJWIiBS6nCUJZvY/gD8e8JrGm0sp9v2sJEFEJEfMjKuXTucHv3gDSCUNyaRTpmlNRUTkLOSku5GZfRT4PLAV+BCphOBfgI8A3wSSwP3AW3JxPhERedPSmVNY0VTPB5obecdFc5UgiIjIWcvVmIRPA/uBd7j7g+l9e939fnf/DeA9wK8AmlpDRGSMToSjfH/XAU6Eo4PK1iybyeIZNXmISkREilGukoSLgR+7e7zfvtOzIbv7T4CfAH+Yo/OJiJSUFw92ct/2NvYc6+bhFw7j7iMfJCIiMka5ShJCwPF+zyNA3YA6zwGX5uh8IiIlpaGmnHgylRi8caKHw529eY5IRESKWa4GLh8E5vZ7/jpwyYA6jUAcEREZtdlTK1nZVE/b8TBvv2A2s6dW5jskEREpYrlqSdhFqstRn0eA1Wb2cTOrMbN3A7+criciImdw6GQPhzt7Bu2/esl0fu2KhUoQRERk3OUqSfgRcKGZLU4//1vgJLAR6AR+QGrGo8/l6HwiIkUnGk+y5ZWj3L/jdX7y/CHiiWRGeTBQRkAzF4mIyATISZLg7hvdvdrd96Sf7wNWAd8AfgrcA6xy9+25OJ+ISDHqiSd47sBJ3OH4qShP7W3Pd0giIlKicrricn/phOG3x+v1RUSKzdTKENeeM4PNLx2haXo1F84bOP+DiIjIxBi3JEFERM6suzdOTUXmx/Cl8+uorQyyZEYNZupaJCIi+ZGrMQmnpQcqN5vZ6ly/tohIMQhH4/z4vw9y3/Y2ItFERpmZsXTmFCUIIiKSVzlLEsxsvpl9D+gAngY29yu7zsxeMLMbcnU+EZFC5O5sajnAy4e6CEcTbHnlaL5DEhERGSQnSYKZzQWeBN5PaqajJ0jNZtTnSWAW8Ku5OJ+ISKEyM65eOr3fc0gmtXqyiIhMLrkak/DnpJKAt7n7z83sz4Gr+wrdPWZmW4Frc3Q+EZGCtXTmFFY21bOwoZpFM2ryHY6IiMgguepu9C7gB+7+8zPUeR2Yl6PziYhMeh3dUR7ctZ8T4eigsuuXzVSCICIik1aukoTZwKsj1IkB+osoIiXhhTc6uW97G3uPhXn4hcO4q0uRiIgUjlwlCe3AghHqLAMO5eh8IiKT2owp5fQNNXjjRA+HO3vzG5CIiMgo5CpJeAx4n5nNGarQzM4F3kG/GY9ERIrZrKmVrGyqZ9bUCn7tygXMqavMd0giIiJZy1WS8HdAJbDFzN4JVMPpNRPeCfwQSAJ/n6PziYhMGm+ciHDoZM+g/VctaeCmVQuZVasEQURECktOZjdy9yfN7Dbgn0hNgdqnM72NA7e4+/O5OJ+IyGQQjSd5/LVj/GLfCeqry/nolQsJBt6899L/Z5GzFY7GMYxgwIgnHMepLs/VJIUiIply9uni7hvMbBvwm8BVwHTgJLAd+Lq7v5yrc4mITAY98QTPv9GJO7R3R3lqbzvXLJ2R77CkyERiCboiMe5+tJVNLfvpCMeorw6xbsV8bl+zhNrKEFWhQL7DFJEik9NbEO7+KvD7w5Wb2Ux31/KiIlIUplaGuO6cGTzy0hEWzajmwnl1+Q5JikwklqClrYNbNu6gN548vb8jHOPebXu4b3sbG9avormpXomCiOTUhLSFm1mdmf018NpEnE9EZDyc6o0P2nfJ/Dref9k8PnBZI3VVoTxEJcWsqyc2KEHorzee5OaNO+jqiU1wZCJS7M46STCzJjNbZ2bvNbPZA8oqzexPgFbgj3NxPhGRidbdG+dHz77Bd7a3EYkmMsrMjCUzp2BmeYpOilU4GufuLa3DJgh9euNJ7tnSSiQ6OIkVERmrs/rSbmZfI9U68B/A94G9Zvab6bIbgJeBvwSqgK8CS87mfCIiE83d2bTrAK8ePkU4mmDLK+oxKRPDMDa17M+q7qZdBwAlqiKSO2NOEszsk8Bvp5++CLwEhICvpcseAuYBdwPnuPvvu/uRs4xXRGRCmRnXLp1++nmZQTKp1ZNl/AUDRkc4u25E7d1RggElCSKSO2czcHk9EAXWuvsTAGZ2PfAwcC+wH3ivu//32QYpIpJPS2ZO4fJF9TQ11LBwenW+w5ESEU849dWhrBKFhppy4glHY5dFJFfOprvRJcCDfQkCgLs/SqrbkZFaF0EJgogUjPbuaGqKye7ooLLV585UgiATynHWrZifVd11zY2AWrhEJHfOJkmoA3YPsf/V9PaJIcpERCalF97o5Dvb22g7HuZnLx7GXV+4JL+qy4PcvmYJFcEz/6muCJZx25olVGlhNRHJobNJEsqAodpAYwDuHjmL1xYRmVAzppTTN9TgjRM9HO7szW9AIkBtZYgN61cNmyhUBMvYsH4VtZWafldEcutsbzvoVpuIFIVZUytZ2VTP6+1h3nbBLGbVVuY7JBGqQgGam+rZetda7tnSyqZdB2jvjtJQU8665kZu04rLIjJObKxN6maWZPRJgrt7ybeHmtnOFStWrNi5c2e+QxEpSQdORAiYMacuMxGIJ5KUmVFWplliZPIJR+MYRjBgxBMOuLoYicgZrVy5kpaWlhZ3XznaY8/202W0f0n1l1dE8qY3nuDx3cd5Zv8J6qvL+eiVCwkG3uzG0f9nkcmmul9CoIYDERlvY/6L6O5lY3nkMngRkdHojSd54WAn7qmZjJ7a257vkERERCYlfWkXkZIxtTLE6nNnALB4Rg0XNdblOSIREZHJSZ0ZRaRoneqNM6Ui82Pu4sY6aitDLJpejZl6QIqIiAxFLQkiUnRO9cb54TNv8J3tbUSiiYwyM2PxjBolCCIiImegJEFEioq78+CuA+w+copwNMGWV47kOyQREZGCoyRBRIqKmXHt0umnnwfLykgmtaSLiIjIaGhMgogUnSUzp7BqUQNN06tZ0FCd73BERCbMwPU0HM+YPlckW7pqRKRgHT/Vy+aXj/LW82ZRX1OeUXZdehYjEZFSEIkl6IrEuPvRVja17KcjHKO+OsS6FfO5XStzyxiou5GIFKTn3zjJd558nX3tYX724mHGunq8iEihi8QStLR1sPpLm7l32x46wjEAOsIx7t22h9Vf3Myutg4iscQIryTyJiUJIlKQZk6poC8vOHiyhyNdvfkNSEQkT7p6YtyycQe98eSQ5b3xJDdv3EFXT2yCI5NCpiRBRArSrKmVXL6onjl1lXzkyoXMnlqZ75BERCZcOBrn7i2twyYIfXrjSe7Z0kokGp+gyKTQKUkQkUlvf0eYgycjg/ZftWQ6v3r5AmZMqchDVCIi+WcYm1r2Z1V3064DgNaIkexo4LKITFq98QSP7T7GM/tOUl8d4mNXNREMvHlvI1CmP3YiUtqCATs9BmEk7d1RggF9bkp2SrIlwcw+bmaeftw6TJ1rzOzHZtZuZmEze9bMPmNmmhpAZIL0xpO8eLALSA3Ae2pve54jEhGZXOIJp746lFXdhppy4glN8iDZKbkkwcwWAP8AnDpDnfcDjwLXAw8C/wiUA18G7p+AMEUEmFoZYnV6KtMlM2u4uLEuzxGJiEwujrNuxfys6q5rbgSUJEh2SipJMDMDNgDHgX8aps5U4JtAArjB3X/d3f8QuAx4AviQmd00MRGLlA53H3LmjYsb6/hgcyPvu3QetZXZ3S0TESkV1eVBbl+zhIrgmb/SVQTLuG3NEqq0sJpkqaSSBOB3gbcANwPdw9T5EDATuN/dn+7b6e49wOfSTz89nkGKlJpTvXF++OxBvvPk64QHzLxhZiyaUUMqxxcRkYFqK0NsWL9q2EShIljGhvWrdKNFRqVkkgQzOx/4W+Cr7v7oGaq+Jb19aIiyR4EwcI2ZaToVkRxwdx7cdYDXjpwiEk2w5eWj+Q5JRKSgVIUCNDfVs/Wutdx63WIa0ivQN9SUc+t1i9l611qam+q14rKMSkm0OZlZEPg28DrwpyNUX57evjKwwN3jZrYHuBBYArw4wnl3DlN03ggxiJQMM+O6c2bw/V0HACgPlpFMOmWauUhEJGtVoQBVoQB33LiMO29cTjBg6UHKri5GMialctX8GdAMXOfugydbz9Q3MvLkMOV9+6flIC4RARbPqOGKxQ0sbKhmQUN1vsMRESlY1f0SAjUcyNko+iTBzK4g1Xrw9+7+RC5eMr0dcXoAd185TEw7gRU5iEWkoBw71cvml47w1vNnn24O73PtOTPyFJWIiIgMVNRjEvp1M3oF+HyWh/W1FAw31+LUAfVEJAvPHTjJvz75Ovs7IvzsxcO4axo+ERGRyaqokwRgCrAMOB/o6beAmgN/nq7zzfS+r6Sfv5zeLhv4YumkYzEQB1rHNXKRIjNragV9ecGhkz0c6erNb0AiIiIyrGLvbtQL3DtM2QpS4xS2kUoM+roiPQJ8FHgH8G8DjrkeqAYedXd9wxEZhVm1lVy+qJ597WHedsFsZkzRBGEiIiKTVVEnCelByrcOVWZmXyCVJPyLu/9zv6IHgC8CN5nZP/StlWBmlcBfput8Y9yCFikC+9rDBAPG3LqqjP1XLZnO1Uuma+YiERGRSa6ok4SxcPdOM/sUqWTh52Z2P9AOvI/U9KgPAN/NY4gik1ZPLMG2V4/x3wdOUl8d4qNXNREKvNmrMaDkQEREpCAU+5iEMXH37wNrSC2e9svA7wAx4A7gJteIS5EhxRJJXj7cBUBHOMaOPe15jkhERETGomRbEtz9C8AXzlD+GPCuiYpHpBjUVoa4/tyZ/OzFwyydNYVLFkzLd0giIiIyBiWbJIjI2XF3unrjTK0MZey/qHEqdVUhFjRUYabuRSIiIoVI3Y1EZNS6emL84Jk3+NcnXyccjWeUmRkLp1crQRARESlgShJEZFTcne/vOkDr0W4i0QRbXj6a75BEREQkx5QkiMiomBnXnTvz9POKUBnJpMbyi4iIFBONSRCRUVs8o4YrFzewcHo18+ur8x2OiIiI5JhaEkRkWEe7evn3p/fR3h0dVHbNOTOUIIiIiBQpJQkiMqTnDpzkX598nQMdEX72wmG0PIiIiEjpUJIgIkOaNbXi9M+HOns40tWbx2hERERkImlMgogMaVZtJasW1bOvI8zbL5hDQ015vkMSERGRCaIkQUTY1x4mUGbMm1aVsf/KJdO52qZrzQMREZESoyRBpIT1xBJsffUYzx04SX11iI9e1UQo8GYvxECZkgMREZFSpDEJIiUslkjyyuEuADrCMXbsac9zRCKFLRyNE4kmiCWSRKKJQSuSi4gUCrUkiJSw2soQ1587k5+9eJhzZk3h0gXT8h2SSEGKxBJ0RWLc/Wgrm1r20xGOUV8dYt2K+dy+Zgm1lSGqQoF8hykikjUlCSIlwt3p7IlTVxXK2H9R41SmVYdY0KA1D0TGIhJL0NLWwS0bd9AbT57e3xGOce+2Pdy3vY0N61fR3FSvREFECoa6G4mUgM6eGP/vF2/wb0+9Pqj7g5kpQRA5C109sUEJQn+98SQ3b9xBV09sgiMTERk7JQkiRc7d+X+7DrDnWDeRaIKfv3w03yGJFI1wNM7dW1qHTRD69MaT3LOllYjGKIhIgVCSIFLkzIzV585M/wxV5QGSSa2eLJILhrGpZX9WdTftOgBoxjARKQwakyBSAhbNqOHKJQ00Ta+hccBaCCIydsGA0RHOrhtRe3eUYEBJgogUBrUkiBSRI109/PuOfbR3RweVXbN0hhIEkRyLJ5z66tDIFYGGmnLiCbXiiUhhUJIgUiSeO3CSf3tyHwdORPjZC4dx15cRkfHmOOtWzM+q7rrmRkD/L0WkMChJECkSs6dWnv75cGcPR7t68xiNSGmoLg9y+5olVATP/Oe0IljGbWuWUFWuXr4iUhiUJIgUiZm1FaxaXE/jtCo+elUTs/olDSIyfmorQ2xYv2rYRKEiWMaG9auorcyuW5KIyGSgWxoiBajteDfBQNmgMQZXLp7O1UtSMxqJyMSoCgVobqpn611ruWdLK5t2HaC9O0pDTTnrmhu5TSsui0gBUpIgUkB6YgkefeUoz7/RybTqEB+7qolQ4M27l4EyJQci+VAVClAVCnDHjcu488blBAOWHqTs6mIkIgVJ3Y1ECkg86ew+egqAE+EYO/a05zkimczC0TiRaIJYIkkkmhi02rbkXnV5kKryAKFAGVXlASUIIlKw9OklUkCmVAS5/tyZPPzCYZbNruXSBdPyHZJMQpFYgq5IjLsfbWVTy346wjHqq0OsWzGf29X1RUREsqAkQWSScnc6I3HqBszBfuG8qdRVhVjQUJ2nyGQyi8QStLR1cMvGHfTGk6f3d4Rj3LttD/dtb2PD+lU0N9UrURARkWGpu5HIJHQyEuP7vzjAv+14fVAXETNTgiDD6uqJDUoQ+uuNJ7l54w66erJbJVhEREqTkgSRScbd+cEvDrD3WJhINMHPXz6a75CkQISjce7e0jpsgtCnN57kni2tRDRGQUREhqEkQWSSMTNWnzsz/TNUlwdIJrVKq4zMMDa17M+q7qZdBwDNhiUiIkPTmASRPHP3QesaLJpRw1VLprNoRjVz66qGOVIkUzBgdISz60bU3h0lGFCSICIiQ1NLgkgeHens4bs79tHeHR1UdvXS6UoQZFTiCae+OrtVfRtqytPz+IuIiAymJEEkT/57/0n+7al9HDzZw8MvHFKXIjlrjrNuxfys6q5rbgR0zYmIyNCUJIjkyZy6ytM/H+ns5dip3jxGI8WgujzI7WuWUBE880d7RbCM29Ys0UJfIiIyLCUJInkys7aCVYvrmV9fxceuamLW1MqRDxIZQW1liA3rVw2bKFQEy9iwfhW1ldl1SxIRkdKk20giE2DvsW5CwTIap2WOMbhq8XRsCYMGLouMVVUoQHNTPVvvWss9W1rZtOsA7d1RGmrKWdfcyG1acVlERLKgJEFkHPXEUuscvHiwk2nVIT52VROhwJt3eMvKlBxI7lWFAlSFAtxx4zLuvHE5wYClBym7uhiJiEhW1N1IZBzFk07rsVMAnAjH2LGnPc8RSSmpLg9SVR4gFCijqjygBEFERLKmJEFkHE2pCHJ9emG05XNquWzhtPwGJCIiIpIF3VYSyRF352QkxrTq8oz9F86byrTqEPPrq/MUmQwlHI1j2OmuOI5TrTvtIiIigJIEkZw4GY7xsxcPc6Srl09c3URNxZv/tcxMCcIkEokl6IrEuPvRVja17KcjHKO+OsS6FfO5XYN6RUREAHU3Ejlr7s4PnjnA6+3h0wOVZXKKxBK0tHWw+kubuXfbHjrCMQA6wjHu3baH1V/czK62DiKxRJ4jFRERyS8lCSJnycy4ftnM9M8wpTKo1ZMnqa6eGLds3EFvPDlkeW88yc0bd9DVE5vgyERERCYXJQkio+Q+OAFoml7D1Uun86urFrBm2UxNbToJhaNx7t7SOmyC0Kc3nuSeLa1EovEJikxERGTyUZIgMgqHO3u4f8c+jp/qHVR21ZLpzK2rGuIomQwMY1PL/qzqbtp1AFCiJyIipUtJgkiWnt1/gn976nUOnezhZy8eVpeiAhMM2OkxCCNp744SDChJEBGR0qUkQSRL86ZVUWapL45Hu3o5NkRrgkxe8YRTXx3Kqm5DTXl6hWIREZHSpCRBJEszplSwalEDCxqq+dhVTcyaWpnvkGQU4skkH2huzKruB5rnEU+eeeyCiIhIMdM6CSJD2HOsm1Bg8PoGVy5uwCw1o5EUllCgjE9evYh/ffL1Mw5ergiW8YmrFhEK6B6KiIiULv0VFOknEk3w0HMH+f6uAzz8wmFiicwvk2VlpgShQAXKjMd2H+MfP7qCiuDQH30VwTL+8aMr2Lb7GAHNUCUiIiVMSYJIPwl3Wo91A3AiHGPHnvY8RyS5Ek84X374FQ6d7OGhz1zPLdcuoqGmHEiNQbjl2kU89JnrOXSyh6/+7FWNSRARkZKm7kYi/UypCHL9uTN5+IXDnD+3luaF9fkOSXLEcd7f3Mjnvv8cF86bykevbOInn1nNlIoQp3pjPPzCYX7rOy28cLCTW69bDChJEBGR0qUkQUqWu3MyEmNadXnG/gvnTaW+ppzGaVrzoJhUlwe5fc0S7tvexvNvdPKnD/43f/rg4HoVwTJuW7OEqnJ9PIqISOlSdyMpSSfCUb7XcoB/e2of3b2ZK+uamRKEIlVbGWLD+lVnHJOwYf0qaiuzmypVRESkWClJkJLj7vzwmTfY1x6mJ5bg5y8fzXdIMkGqQgGam+rZetdabr1uccaYhFuvW8zWu9bS3FRPVSiQ50hFRETyS+3pUnLMjOuXzWRTywHMYGpVkGTSKdNsNiWhKhSgKhTgjhuXceeNywkGLD1I2dXFSEREJE1/EaXoufugaUubptdwzdLpLJpRw2wtilaSqvslBGo4EBERyaTuRlLUDp3s4d+e2sfxU72Dyq5cMl0JgoiIiMgQlCRI0Xpm3wnu3/E6hzt7ePiFwySTmtJSREREJBtKEqRoNdZXUZbuZnTsVC/HhmhNEBEREZHBNCZBitaMKRWsWtTAGycivO382dRVa1pLERERkWwoSZCi0Hr0FOXBMubXV2fsv3JxA2YMGrgsIiIiIsNTkiAFLRJN8POXj/DSoS7qqkJ87KomyvstlKVpTUVERERGT2MSpKAl3dlzvBuAk5EYT+9tz3NEIiIiIoVPSYIUtJqKIGuWzQTg/LlTaV5Yn+eIRERERAqfuhtJwXB3ToRj1NeUZ+y/YO5UGmrKmVtXlafIRERERIqLWhKkIJwIR3lg537u37GP7t54RpmZKUEQERERySElCTLpuTs/fOYN9ndE6Ikl2PzykXyHJCIiIlLUlCTIpGdmrFk2C4AyM6ZVlWv1ZBEREZFxpDEJMum4+6B1DRZOr+bac2awaHo1s6ZW5ikykeIWjsYxjGDAiCccx6ku158JEZFSpE9/mVQOnozwyEtHeMeFc5g+pSKj7IrFDXmKSqS4RWIJuiIx7n60lU0t++kIx6ivDrFuxXxuX7OE2soQVaFAvsMUEZEJpO5GMmk8s+8E392xjyOdvTz8wmF1KRKZAJFYgpa2DlZ/aTP3bttDRzgGQEc4xr3b9rD6i5vZ1dZBJJbIc6QiIjKRlCTIpNFYX0VZupvR8e4ox7p78xyRSPHr6olxy8Yd9MaTQ5b3xpPcvHEHXT2xCY5MRETySUmCTBozplRwxeIGmqZX87GrmphVq7EHIuMpHI1z95bWYROEPr3xJPdsaSUSjZ+xnoiIFA8lCZIXu4+cYl97eND+KxY18MHmRuqqQnmISqS0GMamlv1Z1d206wBgI9YTEZHioIHLMqHC0TibXzrKK4e7qKsK8bGrmigPvpmrlpXpS4jImeRyBqJgwE6PQRhJe3eUYED/P0VESoWSBJlQ7tDW3g3AyUiMp/e2c805M/IclcjkNx4zEMUTTn11KKtEoaGmnHjC0SRHIiKlQd2NZELVVARZs2wmABfOm8qKpvo8RyQy+Y3XDESOs27F/KzqrmtuBDTjmIhIqVCSIOPG3Wnvjg7af8HcqfzaFQu58cI5VOq2pMiIxmsGouryILevWUJF8Mx/CiqCZdy2ZglVWlhNRKRkKEmQcdHRHeU/du7n/h2v092bOSOKmTGnTjMXiWRjvGcgqq0MsWH9qmEThYpgGRvWr6K2UpMJiIiUEiUJknPuzo+efYMDHRF6Y0keeelIvkMSKVjjPQNRVShAc1M9W+9ay63XLaahphxIjUG49brFbL1rLc1N9VpxWUSkxKjtWHLOzLhh+Swe2LmfMjOm15STTLpmLhIZg4mYgagqFKAqFOCOG5dx543LT8+cBK4uRiIiJaroWxLMbLqZ3WpmD5rZbjOLmNlJM9tmZr9uZkP+DszsGjP7sZm1m1nYzJ41s8+YmW6nDeA+eDDjgoZqrjt3Br925QKuOWeGEgSRMeqbgSgbfTMQjVV1eZCq8gChQBlV5QElCCIiJazokwTgw8A3gSuBJ4GvAN8DLgL+Gfh3M8v4Bmtm7wceBa4HHgT+ESgHvgzcP1GBF4I3TkS478nXOXaqd1DZqkUNWjVZ5CxpBiIREcmHUkgSXgHeB8x394+6+5+4+y3AecA+4JeBdX2VzWwqqaQiAdzg7r/u7n8IXAY8AXzIzG6a4PcwKf1i3wn+/el9HOvq5eEXDpNM6suJSK5pBiIREcmHok8S3P0Rd/+huycH7D8E/FP66Q39ij4EzATud/en+9XvAT6Xfvrp8Yu4cMyvr6Is3QjT3h3lWPfg1gQROXuagUhERCZaqd9y6hsN2H/OwLektw8NUf9RIAxcY2YV7n7Gb8VmtnOYovNGFeUkNWNKBVcsbuDgyQhvPX82U/UFRWRc9J+B6J4trWzadYD27igNNeWsa27ktjGuuCwiIjKckk0SzCwIfCL9tH9CsDy9fWXgMe4eN7M9wIXAEuDFcQ1yEtl9pIuKYIAFDdUZ+69Y1IBZakYjERk/moFIREQmUin/ZflbUoOXf+zuP+m3vy69PTnMcX37p410AndfOdT+dAvDiuzCzK9wNM4jLx3h1cOnmFoV4uNXNVHer8uDZi0SGSwcjWPY6S/yjlOdoy/y/V9HDQciIjJeSjJJMLPfBe4EXgI+PtrD09uSGKXrDvvaIwB0RmI8vbeda86ZkeeoRCanSCxBVyTG3Y+2sqllPx3hGPXVIdatmM/t6hIkIiIFpOgHLg9kZr8FfBV4AVjr7u0DqvS1FNQxtKkD6hW1mooga5bNBOCixjpWNNXnOSKRySkSS9DS1sHqL23m3m17Ti+A1hGOce+2Paz+4mZ2tXUQiSXyHKmIiMjISipJMLPPAF8HniOVIBwaotrL6e2yIY4PAotJDXRuHacw88bdOT7Eegfnz63lI1cu5O0XzKZSd0FFhtTVE+OWjTvojSeHLO+NJ7l54w66erJbPVlERCSfSiZJMLO7SC2G9gtSCcKRYao+kt6+Y4iy64Fq4PGRZjYqNO3dUf7j6f189+l9nOqNZ5SZGbOnalE0keGEo3Hu3tI6bILQpzee5J4trUSi8TPWExERybeSSBLM7POkBirvBN7q7sfOUP0B4Bhwk5ld3u81KoG/TD/9xnjFmg/uzv/37BscOBGhN5bkkZeO4F4SQy5EcsIwNrXsB+DCeVP5m3UXs+Ozb+XF//kOdnz2rfz1By/mwnmpnoqbdh3gzaFNIiIik1PRD1w2s08C/5PUCspbgd8dYrrOve6+EcDdO83sU6SShZ+b2f1AO6lVm5en9393YqKfGGbGDctn8cDO/ZSZMWNKOe6gWU1FshMMGJ09cf7qAxdxzTkz+NYTe/nSQy+dHrj8geZGvv6RFTy++xh/9oPnCQb0n0tERCa3ok8SSI0hAAgAnxmmzhZgY98Td/++ma0BPgv8MlAJ7AbuAL7mBX6b3d0HrWuwoKGa1efOoGl6DTNrK/IUmUhhiiecv113MdOqy3nHVx7N6HbUEY6x4bG9/OuTr/OPH13B36y7mHjCNX2piIhMakXf3cjdv+DuNsLjhiGOe8zd3+Xu9e5e5e4Xu/uX3b2gpyY5cCLCfU++zrEhBihfvqhBCYLIWJhz9dLp/Pa/tpxx4PJvfaeFa5ZOx6yg7zOIiEgJKPokQd606/UO/n3HPo519fLwC4dJJvVFRSQX3GHDY3uzGri84bG9FHZbpIiIlAIlCSVkYUM1gfQKye3dUY53R/MckUhx6D9weSQPauCyiIgUgFIYkyBp06dUcOXiBg519vCW82ZRWxnKd0giRSEYsNOLp42kvTuqgcsiIjLpKUkoMasWNWDGoIHLIjJ28YRTXx3KKlFoqCnXwGUREZn01N2oxJSVmRIEkRxznHUr5mdVd11zI6BBCSIiMrkpSRAROUvV5UFuX7OEiuCZP1IrgmXctmYJVeVqxBURkclNSYKISA7UVobYsH7VsIlCRbCMDetXaSyQiIgUBCUJIiI5UBUK0NxUz9a71nLrdYtpqCkHUmMQbr1uMVvvWktzUz1VGowgIiIFQG3eIiI5UhUKUBUKcMeNy7jzxuUEA0Y84YCri5GIiBQU/dUSEcmx6n4JgRoORESkEKm7kYiIiIiIZFCSICIiIiIiGZQkiIiIiIhIBiUJIiIiIiKSQUmCiIiIiIhkUJIgIiIiIiIZlCSIiIiIiEgGJQkiIiIiIpJBSYKIiIiIiGRQkiAiIiIiIhmUJIiIiIiISAZz93zHUHLM7HhVVVXD+eefn+9QRERERKRIvfjii0QikXZ3nz7aY5Uk5IGZ7QGmAnvzHMpYnZfevpTXKKRY6HqSXNL1JLmk60lyJV/X0iKg090Xj/ZAJQkyama2E8DdV+Y7Fil8up4kl3Q9SS7pepJcKcRrSWMSREREREQkg5IEERERERHJoCRBREREREQyKEkQEREREZEMShJERERERCSDZjcSEREREZEMakkQEREREZEMShJERERERCSDkgQREREREcmgJEFERERERDIoSRARERERkQxKEkREREREJIOSBBERERERyaAkQQAws+lmdquZPWhmu80sYmYnzWybmf26mQ15rZjZNWb2YzNrN7OwmT1rZp8xs8BEvweZ/Mzs42bm6cetw9TRNSXDMrPVZvY9MztoZr3p7U/N7F1D1NW1JMMys3enr5396b95rWb2H2Z29TD1dT2VMDP7kJn9g5ltNbPO9N+x+0Y4ZtTXjJl90syeMrNT6e9hPzez9+T+HY1Mi6kJAGb2G8A3gIPAZuB1YDawDqgDvgd82PtdMGb2/vT+HuC7QDvwXmA58IC7f3gi34NMbma2APhvIABMAT7l7v88oI6uKRmWmX0O+AvgGPAjUp9XM4BmYLO7/1G/urqWZFhm9kXgj4DjwPdJXVPnAO8DgsAn3P2+fvV1PZU4M/sFcClwCtgPnAd8x90/Nkz9UV8zZva/gDvTr/8AUA7cBDQAv+PuX8/tuxqBu+uhB8BbSF28ZQP2zyGVMDjwy/32TwWOAL3A5f32VwKPp+vflO/3pcfkeAAG/Ax4Dfi79PVx64A6uqb0ONM19OH0NfAwUDtEeajfz7qW9Bj2kf67lgAOAbMGlK1NXx+t/fbpetKj79o4N/337Ib0v/t9w9Qd9TUDXJPevxuo77d/EalktgdYNJHvWd2NBAB3f8Tdf+juyQH7DwH/lH56Q7+iDwEzgfvd/el+9XuAz6Wffnr8IpYC87ukEtGbge5h6uiakiGluzt+EQgDH3H3roF13D3W76muJTmTJlLdrZ909yP9C9x9M9BF6vrpo+tJcPfN7v6qp7+5j2As18xvpLd/5e4d/Y7ZC/wjUEHqb+iEUZIg2ej74xvvt+8t6e1DQ9R/lNQf82vMrGI8A5PJz8zOB/4W+Kq7P3qGqrqmZDjXAIuBHwMd6b7kd5nZ7w3Tf1zXkpzJq0AUuMLMZvQvMLPrgVpSLZ99dD3JaI3lmjnTMf85oM6EUJIgZ2RmQeAT6af9L9zl6e0rA49x9ziwh1S/ziXjGqBMaunr59ukuqz96QjVdU3JcFalt4eBFlLjEf4W+ArwuJltMbP+d351Lcmw3L0duIvUuLsXzOweM/sbM/t34KekurTd3u8QXU8yWqO6ZsysBmgETrn7wSFe79X0dlnuQx1ecCJPJgXpb4GLgB+7+0/67a9Lb08Oc1zf/mnjFJcUhj8jNaj0OnePjFBX15QMZ1Z6+xuk/ri+DXiSVLeRvwd+CfgP3uwSqWtJzsjdv2Jme4H/C3yqX9FuYOOAbki6nmS0RnvNTMprTC0JMiwz+11So+xfAj4+2sPTW02fVaLM7ApSrQd/7+5P5OIl01tdU6Wnb7pAAz7k7v/l7qfc/Xngg6RmAlkz3NSVQ9C1VOLM7I9IzR6zEVgK1AArgVbgO2b2pdG8XHqr60myNdZrZkKvMSUJMiQz+y3gq8ALwNp082x/fVltHUObOqCelJB+3YxeAT6f5WG6pmQ4fYP4Wt39mf4F6RaqvlbOK9JbXUsyLDO7gdRA+B+4+x3u3uruYXdvIZV0HgDuNLO+7kO6nmS0RnvNjFR/pJaGcaEkQQYxs88AXweeI5UgHBqi2svp7aD+cekviItJDXRuHacwZXKbQuraOB/o6beAmgN/nq7zzfS+r6Sf65qS4fRdGyeGKe9LIqoG1Ne1JEPpW5hq88ACdw8DT5H6ftSc3q3rSUZrVNeMu3eTSk6nmNncIV7v3PR20BiH8aQkQTKY2V3Al4FfkEoQjgxT9ZH09h1DlF0PVAOPu3tvzoOUQtAL3DvMY1e6zrb0876uSLqmZDiPkvqDeq6ZlQ9RflF6uze91bUkZ9I3o8zMYcr79kfTW11PMlpjuWbOdMw7B9SZGPlenEKPyfMg1S3EgaeBhhHqTgWOosVl9BjlA/gCwy+mpmtKj+Gum/vS18BfDtj/diBJqpVhWnqfriU9hn0Av5K+Bg4BjQPK3pm+niLA9PQ+XU96DLyGbmDkxdRGdc0wCRdTs3QAUuLM7JOkBnAlgH9g6H5ve919Y79jPkBq4FcPcD+pJcffR3rJceBXXBeYDGBmXyDV5ehT7v7PA8o+gK4pGYKZzQIeA84BtpLqEtJEqg+5k1pk7T/61f8AupZkCOnF+X5CapasLuBBUgnD+aS6IhnwGXf/ar9jPoCup5KWvgY+kH46h9Ssaq2kPo8Ajrn7HwyoP6prxsz+HriD1GQMDwDlwK8C04Hfcfev5/6dDU9JggAZX9zOZIu73zDguGuBzwJXk8qQd5OaUu5r7p7IfaRS6M6UJKTLdU3JkMysgdRqpR8kNad4F6lua3/j7tuHqK9rSYZkZiHgt4CbgAtIdf9oJ5V8fs3dfzrEMbqeSlgW35Pa3H3RgGNGfc2kb9r+NqnrMklqbZi/c/cfneVbGDUlCSIiIiIikkEDl0VEREREJIOSBBERERERyaAkQUREREREMihJEBERERGRDEoSREREREQkg5IEERERERHJoCRBREREREQyKEkQEREREZEMShJERERERCSDkgQREREREcmgJEFEREQAMLPfN7Pfz3ccIpJ/wXwHICIiIvlnZrcDf5P+udvd78lzSCKSR+bu+Y5BRERE8sjMlgDPAHeQ6mXwv4BL3H1PXgMTkbxRkiAiIlLCzKwM+DnwmrvfnN73LaAJWOvuyTyGJyJ5oiRBREREREQyaOCyiIiIiIhkUJIgIiIiIiIZlCSIiBQRM9trZnsH7FtkZm5mG/MT1egM9R7yqdB+fyIiuaAkQURklNJfGPs/EmZ2zMweMbOP5ju+XNOX5OJkZp9P/7v+8xnqrDSzLjM7YmbnTmR8IpJfWidBRGTs/kd6GwKWAx8A1prZSne/I29RDXYAOB84me9AZFL5KvD7wMfN7Avuvr9/oZmdA/wYMODd7v5qHmIUkTxRS4KIyBi5+xfSj8+6+4eAXwIc+IyZLcpvdG9y95i7v+TuB/Mdi0we7t4JfBkoB/6gf5mZzQZ+AjQAH3L3HRMfoYjkk5IEEZEccff/Al4ided1FWR21TGzZWb23XTXjaSZ3dB3rJldaWYPmNkhM4ua2T4zu9vM5g08j6X8tpk9b2Y9ZnbAzL5uZnVDxXWm7kJmdkU6pgNm1mtmB83sp2b2K+nyLwB9C2p9ckA3q/UDXmvc3sNwzOzqdCybzlDnxfR7a0g/X29m3zOzVjOLmFmnmT1mZh8bxXlvSJ/3C8OUDzuuYpS/p/eZ2X+l/116zewNM9tiZr+Zbawj+CrQAXzKzGakz1kL/CewBPh1d38oR+cSkQKi7kYiIrll6e3ARWiWAk8CrwDfAaqATgAzuxn4JtAL/ADYB5wL3Aq818yucvfX+73WV4DfBQ4C9wAx4P3AlaTuCkezCtTsU8A3gET6vK8Cs4DLgd8E/p3UIlvTgN8jtSLv9/u9xC/6vVZe3oO7P2FmLwPvMbPp7n58wHu8AjgP+J67t6d3fwN4AXg0ff7pwLuAb5vZcnf/fDbnHovR/J7M7DbgbuAQ8EPgGKl/n0uAm4H/M+C1NwKfBG52943ZxOPunWb2FVJd537PzP4CeBBoBu5y92+dxdsVkULm7nrooYceeoziQSoB8CH2vw1Iph9N6X2L+uoDfz3EMctIfSHeDTQOKHsLqS/wD/bbd036tXYDDf32VwJPpMv2Dnidvhg29tt3Aakv5u3AhUPENf9Mx0/0exjh3+NP0sf89hBl/5gue2+/fUuHqFcO/Ff6dzLwPQz1+7shve8Lw8S0d4h/h9H+nnaSSiZmDfH6M4bYtzEd0/pRXs9T09dBB/C99Gt8ZSL/T+mhhx6T76HuRiIiY2RmX0g//srMHgAeItWS8BV3bxtQ/TBvDnTu79OkBj7/nrsf6F/g7o+Qutv83nQXEEjdQQb4K3/zzjju3kPqy3K2Pk2qNfkv3P35gYU+YBBrFq+Vj/fQ59ukErNP9t9pZuXATcARUt1n+s7z2sAXcPcoqYQiCLx1DDFkY7S/J4A4qcRlYLzHhnj9PyE1QP3B0QTlqbEJXyHVYrQO+C6pAc0iUsLU3UhEZOz+PL114ASwFbjX3e8bou4z7t47xP6r09s1ZrZqiPJZQIDUXeidwIr0/i1D1N1K6ktlNq5Kb//zjLWyk6/3AKQSGjP7L+DtZnaBu7+QLnovqYG3X3b3069pZguBu0glAwtJdf3qr3E05x+F0f6evgP8PfC8mX2X1O/rMXc/OtSLe2pg+lgHp99PKondD3zC3Qd2lxOREqMkQURkjNzdRq512qFh9k9Pb/9whOOnpLd9A3sPDxFPwsyOD9w/jGnp7YEzVcpSvt5DfxuBt5NqTbgrva+vZeFf+iqZ2RLgKaCeVELyU1JTwyZIdSv6JFAxhvNnY1S/J3f/32Z2jNT4kN8FPgO4mW0B/tDdn85hbBemt0+mW1VEpMQpSRARmRjD3ZntW7ugLt3tYyR99WcDrf0LzCxA6otoNl/8T6S3jaRmZDob+XoP/T1IaiD4x8zsT0m1ILyTVAvOM/3q3ZF+/UGDe83s1xjQZekMkuntcH9H6xi8LsVof094auDwt8xsGqmxHB8EbgF+Ymbnu/uRLOMdycr0NpeJh4gUMI1JEBHJr+3p7eos67ekt2uGKFtN9jd/+s77zizqJtLbwAivNdHv4TR3j5CajWkeqQHkH02/zr8MqHpOevu9IV5mqHiG05HeLhhYYKlFyKYNccxof0+nufsJd/+xu3+KVKtJw1he5wwuT2+VJIgIoCRBRCTfvk5qYOqXzWzZwEIzKzez/l8GN6a3n+2b9z9drxL4m1Gc9xuk+v5/3swuGOK88/s97SDVErJwkr2Hgfpe9xPpR5xUv/7+9qa3NwyI8ZdITUOarZdItVy838xm9XudKuBrwxwzqt+Tmb3DzIZKmPrOFx5w/FwzO2+0a02k9bUk7BzDsSJShNTdSEQkj9z9JTO7Bfi/pAaoPkRqLYUQqS/lq4GjpOb6x90fM7N/AH4HeC49q1LfGgMdZDlw1d1fSC/I9U/ALjP7f6TWSZhO6q5yF7A2XfeUmT0JrDaz76TjSwA/cPdn8/UehnhPj5nZbuDD6XP/cIjuOP+H1OxK/2Fm3yPVreki4B2kWiJ+Nctzxczsq8DnSf3+HiT1N/XtwBvpx8BjRvV7IjWYuMfMtpFKbixdZxWpL/M/G3CKvyG9TgJvJkwjMrMmYAbQ6u4dI9UXkdKgJEFEJM/c/T4zewa4k9QX8xuBblJfNB8gNSVlf79H6svlbwG3A8dJ9cn/U1ILnmV73m+a2XPAH5C6s/4BUgt2PQv884DqHwe+TOrL9K+R+sK6P103b+9hCP8C/EW/nzO4+7Nmthb4S1ILqAXT51tHapxGVklC2p+Tupv/KeA2UoPT7we+QGqxtkFG+Xv6Y+CXSM0G9S6gB2gjNTD7G+4+aGrUMdJ4BBEZxDTLmYiIiIiI9KcxCSIiIiIikkFJgoiIiIiIZFCSICIiIiIiGZQkiIiIiIhIBiUJIiIiIiKSQUmCiIiIiIhkUJIgIiIiIiIZlCSIiIiIiEgGJQkiIiIiIpJBSYKIiIiIiGRQkiAiIiIiIhmUJIiIiIiISAYlCSIiIiIikkFJgoiIiIiIZFCSICIiIiIiGZQkiIiIiIhIBiUJIiIiIiKS4f8Hv/y7k16gu7kAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 264, "width": 388 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.scatterplot(x = mod_seniority.predict(), y = df_income['Income'])\n", "sns.lineplot(x = df_income['Income'], y = df_income['Income'], alpha = .5, linestyle = \"dotted\")\n", "plt.xlabel(\"Predicted values: $\\hat{Y}$\")\n", "plt.ylabel(\"Real values: $Y$\")" ] }, { "cell_type": "markdown", "id": "4b568f0b", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Solution (3)" ] }, { "cell_type": "code", "execution_count": 15, "id": "f53edb05", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Residuals')" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAAILCAYAAACqz3BJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAABLeklEQVR4nO3de5yUd333/9eHPcAukgQ8S3oTsCHxLERuNRIJ2tJo64nqrW09kBSDNVo1eP/w1Da22nqs1cbaRBG00ap3SmK1arUmIaBG04D1bFQOSjykyjYh7MIe+Pz+uGZwWHZnZ5eZPcy8no/HPC7mur7XXN8drp2d93V9D5GZSJIkSdJoZk11BSRJkiRNb4YGSZIkSVUZGiRJkiRVZWiQJEmSVJWhQZIkSVJVhgZJkiRJVRkaJEmSJFVlaJAkSZJUlaFBkiRJUlWGBkmSJElVGRokSZIkVWVokCRJklRV+1RXQBARe4HTgH1TXBVJkiQ1r7OAuzNz8Xh3NDRMD6d1dXUteMhDHrJgqisiSZKk5vTd736Xvr6+Ce1raJge9j3kIQ9ZcNttt011PSRJktSkzjvvPHbt2rVvIvvap0GSJElSVYYGSZIkSVUZGiRJkiRVZWiQJEmSVJWhQZIkSVJVhgZJkiRJVRkaJEmSJFVlaJAkSZJUlaFBkiRJUlWGBkmSJElVGRokSZIkVdU+1RXQ1OjtHyQI2tuCwaEkSbo7PR0kSZJ0Mr8ltpi+gSEO9Q1w1c172LbrAD29A8zv7mDt8jPZsGoJ8+Z00NXRNtXVlCRJ0jRiaGghfQND7NrfwyVbb+Xo4LHj63t6B9i8cy/X3LKfLetWsGzRfIODJEmSjrNPQws5dGTgpMBQ6ejgMS7eeiuHjgxMcs0kSZI0nRkaWkRv/yBXbd8zamAoOzp4jKu376Gvf3CSaiZJkqTpztDQIoJg264DNZXdtvsOIBpbIUmSJM0YhoYW0d4W9PTW1uzo4OF+2tsMDZIkSSoYGlrE4FAyv7ujprIL5nYyOJQNrpEkSZJmCkNDi0iStcvPrKns2mULAUODJEmSCoaGFtHd2c6GVUuY3V79v3x2+ywuXbWELid6kyRJUomhoYXMm9PBlnUrRg0Os9tnsWXdCubNqa0ZkyRJklqDoaGFdHW0sWzRfHZsWs36lYtZMLcTKPowrF+5mB2bVjuxmyRJkk5iG5QW09XRRldHG5evWcrGNefQ3halTs9pkyRJGofe/kGCOP45miTdfo5KalJ+urWoyj9s3liQpNr1DQxxqG+Aq27ew7ZdB+jpHWB+dwdrl5/JhlVLmDenwzu2kpqOoUGSpBr1DQyxa38Pl2y9laODx46v7+kdYPPOvVxzy362rFthU09JTcc+DZIk1ejQkYGTAkOlo4PHuHjrrRw6UttkmpI0UxgaJEmqQW//IFdt3zNqYCg7OniMq7fvoa9/cJJqJkmNZ2iQJKkGQbBt14Gaym7bfQcQja2QJE0iQ4MkSTVobwt6emtrdnTwcD/tbYYGSc3D0CBJUg0Gh5L53bVNfrlgbmdpOGtJag6GBkmSapAka5efWVPZtcsWAoYGSc3D0CBJUg26O9vZsGoJs9ur/+mc3T6LS1ctccJMSU3F0CBJUo3mzelgy7oVowaH2e2z2LJuBfPm1NaMSZJmCkODJEk16upoY9mi+ezYtJr1KxezYG4nUPRhWL9yMTs2rXZiN0lNqSXvnUbEW4HHAEuB+wB9wH7geuDKzPzVCPucD7wBeBwwB/gh8EHg7zNzaHJqLkmaal0dbXR1tHH5mqVsXHMO7W1R6vScNkmS1LRa9dPtVcAu4AvAncBcijBwBXBpRDwuM39SLhwRzwD+BTgCfBw4CDwNeBfwBOA5k1l5SdLU664ICN5YkNTsWjU0nJaZR4avjIg3A68DXgu8tLTuNOD9wBBwYWb+Z2n9nwE3AM+OiOdl5scmq/KSJEnSZGrJPg0jBYaST5SWZ1esezZwX+Bj5cBQ8RpvKD39k7pXUpIkSZomWjI0VPG00vIbFeueVFp+boTyNwO9wPkRMbuRFZMkSZKmSqs2TwIgIl4N3As4naJj9EqKwPCWimLnlJa3D98/MwcjYi/wMGAJ8N0xjnfbKJvOHV/NJUmSpMnT0qEBeDVw/4rnnwPWZeZ/V6w7vbS8a5TXKK8/o75Vk6SJ6e0fJIjjo/okeUKnXUmSxqul/4pk5gMAIuL+wPkUdxh2R8TvZeauGl8myi9Xw/HOG/EFijsQy2s8niSNqG9giEN9A1x18x627TpAT+8A87s7WLv8TDasWsK8OR3OHyBJmhD7NACZ+YvMvA5YA9wb+HDF5vKdhNNP2rFw2rBykjTp+gaG2LW/hwvediObd+6lp3cAgJ7eATbv3MsFb72R3ft76BtwWhlJ0vgZGipk5n7gO8DDIuI+pdXfLy2XDi8fEe3AYmAQ2DMplZSkERw6MsAlW2/l6OCxEbcfHTzGxVtv5dCRgUmumSSpGRgaTvag0rJ8Oe6G0vKiEco+EegGvpyZRxtdMUkaSW//IFdt3zNqYCg7OniMq7fvoa9/cJJqJklqFi0XGiLi3Ih4wAjrZ5Umd7sfRQjoKW26Fvgl8LyIeExF+TnAm0pP39fgakvSqIJg264DNZXdtvsOft0VS5Kk2rRiR+iLgLdHxM3Aj4BfUYygtIpi2NSfAy8uF87MuyPixRTh4aaI+BhwEHg6xXCs1wIfn9SfQJIqtLfF8T4MYzl4uJ/2NkODJGl8WjE0/AdwNfAE4FEUQ6UeppiH4Z+A92TmwcodMvP6iFgFvB74fWAO8EPg8lL5MUdOkqRGGRxK5nd31BQcFsztZHAocRAlSdJ4tFxoyMxvAZdNYL8vAU+tf40k6dQkydrlZ7J5594xy65dtpAaRoiWJOkELdenQZKaTXdnOxtWLWF2e/WP9Nnts7h01RK6nOhNkjROhgZJagLz5nSwZd2KUYPD7PZZbFm3gnlzOia5ZpKkZmBokKQm0NXRxrJF89mxaTXrVy5mwdxOoOjDsH7lYnZsWs2yRfOdEVqSNCHeo5akJtHV0UZXRxuXr1nKxjXn0N4WDA4lkDZJkiSdEv+KSFKT6a4ICPW+sdDbP0gQxwNJkiccT5LUnPyklySNqW9giEN9A1x18x627TpAT+8A87s7WLv8TDasWsK8OR02fZKkJmZoUN15JVJqLn0DQ+za38MlW2/l6OCx4+t7egfYvHMv19yyny3rVthnQpKamN/kVDdeiZSa06EjAycFhkpHB49x8dZb2bFptb/jktSkHD1JdVG+EnnB225k8869x2emLV+JvOCtN7J7fw99A0NTXFNJ49HbP8hV2/eMGhjKjg4e4+rte+jrH5ykmkmSJpOhQXVR65XIQ0cGJrlmkk5FEGzbdaCmstt23wFEYyskSZoShgadMq9ESs2rvS2O3zkcy8HD/bS3GRokqRkZGnTKvBIpNa/BoWR+d22zSC+Y21maF0KS1GwMDTplXomUmleSrF1+Zk1l1y5bCBgaJKkZGRp0yrwSKTWv7s52Nqxawuz26n8uZrfP4tJVS5x5WpKalKFBp8wrkVJzmzengy3rVowaHGa3z2LLuhXMm1PbxQNJ0sxjaGhRvf2D9PUPMTB0jL7+IXpPoXOyVyKl5tbV0cayRfPZsWk161cuZsHcTqC4c7h+5WJ2bFrtxG6S1OT89tZiGjUBW/lK5MWjDLvqlUhpZuvqaKOro43L1yxl45pzjs/4DumFAElqAX7St5DyBGzD51MoT8B2zS372bJuxYSuGFZeibx6+x627b6Dg4f7WTC3k7XLFnKpM0JLTaG7IiD469w4vf2DBHE8nCV5wnsvSZPNT6AWUusEbDs2rZ7Ql3uvRErSqWnU3WBJOlX2aWgRkzkBW3dnO12dbXS0zaKrs83AIEk1KN8NvuBtN7J5597jQ1mX7wZf8NYb2b2/h76BoSmuqaRWZGhoEU7AJknTW613gw8dqW1eHEmqJ0NDi3ACNkmavibzbrAkTYShoUU4AZskTV/eDZY03RkaWoQTsEnS9OXdYEnTnaGhRTgBmyRNX94NljTdGRpaSHkCttGCgxOwSdLU8G6wpOnO0NBCKidgW79yMQvmdgLFVav1KxezY9PqCU3sJkk6Nd4NljTd+anTYpyATZKmp/Ld4ItHGXbVu8GSppLfEltUd0VA8MaCJE29yrvBV2/fw7bdd3DwcD8L5naydtlCLnVGaElTyNAgSdI04d1gSdOVn0CSJE0z3g2eHL39gwRxPJwlecJ7L+nX/M2QJEktpW9giEN9A1x18x627TpAT+8A87s7WLv8TDbYDEwakaFBkiS1jL6BIXbt7+GSYR3Oe3oH2LxzL9fcsp8t61Y4mqA0jEOuSpKklnHoyMBJgaHS0cFjXLz1Vg4dqW2GbqlVtFxoiIh7R8T6iLguIn4YEX0RcVdE7IyIP46IEd+TiDg/Ij4TEQcjojcivhERr4wIL0NImpDe/kH6+ocYGDpGX/8Qvf2DU10lqan19g9y1fY9owaGsqODx7h6+x76/J2UjmvF5knPAd4H/Ay4EfgxcH9gLfAB4CkR8ZzMPD7dZkQ8A/gX4AjwceAg8DTgXcATSq8pSTWxPbU0NYJg264DNZXdtvsONq45p8E1kmaOVgwNtwNPB/4tM49faoiI1wFfA36fIkD8S2n9acD7gSHgwsz8z9L6PwNuAJ4dEc/LzI9N6k8haUayPbU0ddrbgp7e2podHTzcT3tbNLhG0szRcs2TMvOGzPxUZWAorf858I+lpxdWbHo2cF/gY+XAUCp/BHhD6emfNK7GkpqJ7amlqTM4lMzvrm1G7QVzO0tzZEiCFgwNYyj/la5sxPik0vJzI5S/GegFzo+I2Y2smKSZz/bU0tRKkrXLz6yp7NplCwFDg1RmaCiJiHbghaWnlQGh3KDx9uH7ZOYgsJeimdeSGo5x20gP4NxTq72kmWC87anBphFSPXV3trNh1RJmt1f/+jO7fRaXrlriLNxSBUPDr70FeDjwmcz894r1p5eWd42yX3n9GQ2ql6QmYXtqaerNm9PBlnUrRg0Os9tnsWXdCubNqa0Zk9QqjNBARPwpsBH4HvCC8e5eWo55DzMzzxvl+LcBy8d5XEkzTLk9dS3Bodye2r7QUn11dbSxbNF8dmxazdXb97Bt9x0cPNzPgrmdrF22kEsdwUwaUcuHhoi4DHg38B3gyZl5cFiR8p2E0xnZacPKSdKIyu2pN+/cO2ZZ21NLjdPV0UZXRxuXr1nKxjXn0N4WpU7PaZMkaRQt3TwpIl4JXAl8C1hdGkFpuO+XlktH2L8dWEzRcXpPg6opqUnYnlqaXro72+nqbKOjbRZdnW3+zklVtGxoiIhNFJOzfZ0iMNw5StEbSsuLRtj2RKAb+HJmHq17JSU1HdtTS5JmopYMDaWJ2d4C3EbRJOmXVYpfC/wSeF5EPKbiNeYAbyo9fV+j6iqpuVS2p16/cjEL5nYCRR+G9SsXs2PTaid2kyRNOy13Hy4iXgT8JcUMzzuAP404aYSSfZm5FSAz746IF1OEh5si4mPAQYpZpc8prf/45NReUjOwPbUkaaZpxb9Oi0vLNuCVo5TZDmwtP8nM6yNiFfB64PeBOcAPgcuB92SmvRUljVt3RUDwxoIkaTprudCQmVcAV0xgvy8BT613fSRJkqTpriX7NEiSJEmqnaFBkiRJUlWGBkmSJElVGRokSZIkVWVokCRJklSVoUGSJElSVYYGSZIkSVUZGiRJkiRVZWiQJEmSVJWhQZIkSVJVhgZJkiRJVRkaJEmSJFVlaJAkSZJUlaFBkiRJUlWGBkmSJElVGRokSZIkVWVokCRJklSVoUGSJElSVYYGSZIkSVUZGiRJkiRVZWiQJEmSVJWhQZIkSVJV7VNdAUmSJKlV9PYPEgTtbcHgUJIk3Z3T/yv59K+hJEmSNMP1DQxxqG+Aq27ew7ZdB+jpHWB+dwdrl5/JhlVLmDeng66Otqmu5qgMDZIkSVID9Q0MsWt/D5dsvZWjg8eOr+/pHWDzzr1cc8t+tqxbwbJF86dtcLBPgyRJktRAh44MnBQYKh0dPMbFW2/l0JGBSa5Z7QwNkiRJUoP09g9y1fY9owaGsqODx7h6+x76+gcnqWbjY2iQJEmSGiQItu06UFPZbbvvAKKxFZogQ4MkSZLUIO1tQU9vbc2ODh7up73N0CBJkiS1lMGhZH53R01lF8ztZHAoG1yjiTE0SJIk1Vlv/yB9/UMMDB2jr3+I3mnaTl2NlyRrl59ZU9m1yxYC0zM0OOSqJElSncz0sfhVf92d7WxYtYRrbtlftTP07PZZXLpqCV3TdKI37zRIkiTVQXks/gvediObd+493o69PBb/BW+9kd37e+gbGJrimmqyzZvTwZZ1K5jdPvJX79nts9iybgXz5tTWjGkqGBokSZLqoBnG4ldjdHW0sWzRfHZsWs36lYtZMLcTKPowrF+5mB2bVk/rid3A5kmSpGmgt3+QIGhvCwaHkiTpnqa36KWRjHcs/o1rlk7bZihqjK6ONro62rh8zVI2rjnn+Ocd5Iw4F6Z/DessIp4NrAIeDTwKmAd8JDOfX2Wf84E3AI8D5gA/BD4I/H1meo9RkibI9t9qFuMdi3/jmnMaXCNNV5UXRGbSx1vLhQaKL/+PAu4BDgDnViscEc8A/gU4AnwcOAg8DXgX8ATgOY2srCQ1q3L77+HNOcrtv6+5ZT9b1q2Y9rfsJWiesfil0bRin4ZXAUuB04A/qVYwIk4D3g8MARdm5h9n5v+luEvxFeDZEfG8xlZXkpqT7b/VTJplLH5pNC0XGjLzxsz8QWbW8tv6bOC+wMcy8z8rXuMIxR0LGCN4SJJONt72332Oca9prlnG4pdG03KhYZyeVFp+boRtNwO9wPkRMXvyqiRJU6deE1aNt/032JRD01t5LP7RhtQsm+5j8TeCE901h9Y5Yyem3Evp9uEbMnMwIvYCDwOWAN8d68Ui4rZRNlXtVyFJU63eHZZt/61mVB6L/+JRmt3NhLH468mBDpqLoaG600vLu0bZXl5/RuOrIklToxEdlsvtv2sJDuX233630HRXORb/1dv3sG33HRw83M+CuZ2sXbaQS1voi7IDHTQfQ8OpKV/6qqlhYmaeN+KLFHcglterUpJUT7V2WN6xaXXNf/zL7b8379w7ZtlTbf/tHBCaTDN9LP56acTnhqaWfRqqK99JOH2U7acNKydJTaVRHZYno/1338AQd959hHd+/nbOf8sXOfv1n+X8t3yRd37+du48dIS+AafZUeN0d7bT1dlGR9ssujrbWiowONBBczI0VPf90nLp8A0R0Q4sBgaBPZNZKUmaLI3ssFxu/z1acDiV9t/lphEXvO1GNu/ce7wZVLlpxAVvvZHd+3sMDlIDONBBczI0VHdDaXnRCNueCHQDX87Mo5NXJUmaPI3ssFzZ/nv9ysUsmNsJFH0Y1q9czI5Nqyfc3tk5IKSp40AHzal17pVNzLXAW4HnRcTfl+dqiIg5wJtKZd43VZWTpEZrdIflRrT/Hm/TiI1rlrZU0xGp0RzooDm13J2GiHhmRGyNiK3Aa0qrH19eFxHvKJfNzLuBFwNtwE0R8YGIeBvwdeDxFKHi45P6A0jSJJqsCavq2f7bphHS1HKiu+bUcqEBeDTwotLjd0rrllSse3Zl4cy8HlhFMZnb7wMvBwaAy4Hn1TiztCTNSDNxwiqbRkhTayZ+bmhsLRcaMvOKzIwqj7NG2OdLmfnUzJyfmV2Z+YjMfFdm2oNOVTkLpppBIzssN0K5aUQtyk0jJNXXTPvc0NiMdlIDOAummslMm7BqMueAkDSymfa5obGFrWumXkTctnz58uW33XbbVFdFdTDaLJhl5asrzoKpmWj4RGnTdcKqOw8d4YK33li1M/Ts9lns2LSa+82bM4k1k1rPTPncaAXnnXceu3bt2jXahMPVtFzzJKnRHOpRzWymTFhl0whp+pgpnxuqztAg1ZGzYErTQyPngJCkVmTUk+povEM9blxzToNrJLWuRswBIUmtyk9NqY4c6lGafrorAoI3FiRpYmyeJNWRQz1KkqRmZGiQ6shZMCVJUjMyNEh15CyYkiSpGRkapDpzqEdJktRsDA1SnTnUoyRJaja2jZAawKEeJUlSM/Hbi9RADvUoSZKagc2TJEmSJFVlaJAkSZJUlaFBkiRJUlX2aZAk1ay3f5AgjnfuT/KEvjuSpObkJ70kaUx9A0Mc6hvgqpv3sG3XAXp6B5jf3cHa5WeyYdUS5s3pcBhhSWpihgZJUlV9A0Ps2t/DJVtv5ejgsePre3oH2LxzL9fcsp8t61Y4/4gkNTH7NEiSqjp0ZOCkwFDp6OAxLt56K4eODExyzSRJk8XQIEkaVW//IFdt3zNqYCg7OniMq7fvoa9/cJJqJkmaTIYGSdKogmDbrgM1ld22+w4gGlshSdKUMDRIkkbV3hb09NbW7Ojg4X7a2wwNktSM6hoaImJZRLw0Ik6vWDc3Ij4UEf8TET+NiFfU85iSpMYZHErmd3fUVHbB3E4Gh7LBNZIkTYV632nYBLw+M++qWPc3wAtKx7o38LcRsabOx5UkNUCSrF1+Zk1l1y5bCBgaJKkZ1Ts0PAa4qfwkIjqAFwFfA+4HLAZ+CfxpnY8rSWqA7s52Nqxawuz26n8uZrfP4tJVS+hyojdJakr1Dg33A35S8fwxwDzgqsw8kpk/BT4JPLLOx5UkNci8OR1sWbdi1OAwu30WW9atYN6c2poxSZJmnnqHhuTECeNWltZtr1j338B963xcSVKDdHW0sWzRfHZsWs36lYtZMLcTKPowrF+5mB2bVjuxmyQ1uXrfR/4x8LiK588ADmTmnop1DwJ66nxcSVIDdXW00dXRxuVrlrJxzTm0t0Wp03PaJEmSWkC9P+k/AbwxIq4FjgCPB/5uWJmHAz+q83ElSZOguyIgeGNBklpHvUPDu4CLgLWl518H/rK8MSIeCpwH/HWdjytJkiSpQeoaGjLzHuAJEfHw0qrvZOaxiiK9wLOA/6zncSVJkiQ1TkMaombmt0ZZvw/Y14hjSpIkSWqMeo+eJEmSJKnJnNKdhoi4YYK7ZmY++VSOLUmSJGlynGrzpAsnuF+e4nEnXUScSdGp+yLg3sDPgOuBN2amQ8hKkiSpaZ1SaMjMlmjeFBEPBr5MMeP1J4HvAf8beAVwUUQ8ITN/NYVVlCRJkhqmJb7018E/UASGP83MZ2bmazLzSRRDzJ4DvHlKaydJkiQ1kKFhDBGxBFhDMerTe4dt/gvgMPCCiJg7yVWTJEmSJkVDhlyF430AFgKzR9qemTc36th19qTS8vPD5pwgMw9FxJcoQsXjgC9OduUkSZKkRqt7aIiINRTNds4do2hbvY/dIOeUlrePsv0HFKFhKWOEhoi4bZRN595591HOes2/AfCKJ5/Nq3576QkF3vTp7/CBnXsBeP1TH8KLn7jkhO2v3fYN/vlrPwHgr5/1CP7wsf/rhO1/+s+7+df/+ikA737eo3nGoxeesP2Pt97KF793JwAfeOFj+K2H3v+E7c+96it8de9BAP75xY/j8Q++9wnbf+/vd/CtO+4G4FMvW8kjzjz9hO2r33ETe395GIAbNq5iyX3vdcL2//3m/+DOQ0cB+Orrnsz9T5tzwvaH/fnnONw/BMC33vg73Gv2iadu+b0D2PeW3z1h2z1HB3n4X/w7AHM72/j2X150wvZf3H2Ex/518V93v3mz+drrf+uE7Xv++x6e9M7tACy+z1xufPWFJ2z/5oG7eNqVOwF4+MLT+PTLLzhh+1d+9Cv+4P23APDYxQv4+IbHn7D9P77zC9Z/uJjv8Mnn3o/N61acsP2TX7+DV3zs6wA8/VEP4j1/sOyE7R/96o953XXfBOAP/vdv8DdrH3nC9vffvIc3f+a7AKxfuZg3/N5DT9j+ri/czru/+APAc89zz3Ovkuee5x547nnuNde5t/9XvUxUXZsnRcRjgU8DZwBXAgHcDLyfovNwAJ+iGIVopij/Jt41yvby+jMaXxVJkiRp8tX7TsPrgCPAisz8aUS8HLgxM/8yIgK4AtgIvL7Ox51KUVqOOYxsZp434gsUdyCW17NSkiRJUr1EZv2mTIiIOyna/j+/9PwY8JeZeUVFmVuB/Zn57LoduIEi4u3Aq4FXZ+Y7R9h+JXAZ8NLMfN8Ej3Hb8uXLl99222itlyRJkqRTc95557Fr165do13IrqbeoyedDvy44nk/MHxUoS8BT6zzcRvp+6Xl0lG2n11ajtbnQZIkSZrR6h0a7gTmD3v+4GFlOoCuOh+3kW4sLddExAnvV0TMA54A9AG3THbFJEmSpMlQ79BwOyeGhFuA346IpQAR8QDg9ylGHJoRMvNHwOeBsyiaIVV6I8WdlA9n5uFJrpokSZI0KeodGj4HrIqIBaXn76a4q7C71Jfhe8B9gb+r83Eb7aUUd03eExHXR8TfRMQNwKsoglIzdeyWJEmSTlDv0HAVRX+FAYDM/BLwHGAv8HDgZ8CfZOaH63zchirdbXgMsBV4LMUIUA8G3gM8PjN/NXW1kyRJkhqrrkOuZubdwFeHrbsOuK6ex5kKmfkT4OKprockSZI02ep9p0GSJElSkzE0SJIkSaqqrs2TImJPjUUzM4cPxSpJkiRpGqpraKC4czHSFNOnA2eU/v1TSh2lJUmSJE1/9e4IfdZo2yLiNylGG5oL/E49jytJkiSpcSatT0Nm/hBYCywE/mKyjitJkiTp1ExqR+jMPAJ8AfiDyTyuJEmSpImbitGTBoEHTMFxJUmSJE3ApIaGiLgP8CzgJ5N5XEmSJEkTV+8hV/+8ynF+A3gGxUhKr63ncSVJkiQ1Tr2HXL1ijO13A2/KzLfV+biSJEmSGqTeoWH1KOuPAT3A9zJzsM7HlCRJktRA9Z6nYXs9X0+SJEnS1JuK0ZMkSZIkzSCndKchIv7XRPfNzB+fyrElSZIkTY5TbZ60D8gJ7Jd1OLYkSZKkSXCqX9w/zMmhYTHwROAu4OvAzykmc3s0xXCrNwN7T/G4kiRJkibJKYWGzFxX+TwizgG+ArwLeGNm3l2x7TTgjcALgUtP5biSJEmSJk+9O0K/BfhmZm6sDAwAmXl3Zr4K+HapnCRJkqQZoN6h4YnAzjHK7ARW1fm4kiRJkhqk3qFhNkX/hWoeWConSZIkaQaod2jYDTwvIpaNtDEizgOeC+yq83ElSZIkNUi9hz19I/A54JaI+AjFSEm/AO5P0STpDymCyhvrfFxJkiRJDVLX0JCZ/xERzwOuAtYBL6rYHEAPcGlmfrGex5UkSZJmgt7+QYKgvS0YHEqSpLtz+k9fVvcaZua1EfFZ4BnAcoq5Ge6iaJL0ycw8XO9jSpIkSdNZ38AQh/oGuOrmPWzbdYCe3gHmd3ewdvmZbFi1hHlzOujqaJvqao6qIbGmFAw+WnpIkiRJLatvYIhd+3u4ZOutHB08dnx9T+8Am3fu5Zpb9rNl3QqWLZo/bYNDvTtCS5IkSapw6MjASYGh0tHBY1y89VYOHRmY5JrV7pTuNETEC0v/vC4zD1U8H1NmfvhUji1JkiRNd739g1y1fc+ogaHs6OAxrt6+h41rltI1Dfs4nGqNtgIJ3AIcqnheTZTKGBokSZLU1IJg264DNZXdtvsONq45p8E1mphTDQ2XUASAn5WeX3yKrydJkiQ1jfa2oKe3tmZHBw/3094WDa7RxJxSaMjMrcOef+iUaiNJkiQ1kcGhZH53R03BYcHcTgaHkunYF9qO0JIkSVKDJMna5WfWVHbtsoWM3dJ/atQ1NETE/Ih4aETMHrb+4oj4ZER8NCIeW89jSpIkSdNVd2c7G1YtYXZ79a/ds9tncemqJdOyEzTU/07DXwNfrXzdiHg58AHgacDzgBsj4qF1Pq4kSZI0Lc2b08GWdStGDQ6z22exZd0K5s3pmOSa1a7eoeEJwBczs69i3auBO4AnAv+ntO7yOh9XkiRJmpa6OtpYtmg+OzatZv3KxSyY2wkUfRjWr1zMjk2rp/XEblD/GaEXAl8sPyndUfgNYFNm7iytew5FgJh0EdEBvBR4NLAMeCjQAbw4Mz8wxr4vAi4r7TME7AbekZmfbmSdJUmSNPN1dbTR1dHG5WuWsnHNObS3BYNDCeS0bZJUqd53GrqAIxXPn0DRm+M/Ktb9iCJcTIW5wN8B64AHAD+vZaeIeAfFHBQPBN4PXAM8AvhURLysAfWUJElSE+rubKers42Otll0dbbNiMAA9Q8NdwDnVjz/HeBu4L8q1s0HKpsvTaZe4KnAgzLzAcAHx9ohIs4HNlKEnUdm5qsy8zLgPOAg8I6IOKtxVZYkSZKmVr1Dw43AUyPiZRGxHng68LnMrJw3+zeBn9T5uDXJzP7M/Gxm/mzs0se9pLR8c2b2VLzWPuC9wGyc1E6SJElNrN6h4W+Ae4B3A1dTNFW6orwxIu4HrAK+XOfjNtKTSsvPjbDts8PKSJIkSU2nro2oMnNvRDwMeHZp1b9m5o8riiyiuDr/0Xoet1EiYi5F/4t7Rrk78YPScmmNr3fbKJvOHWW9JEmSNOXq3vMiM38OXDnKtluBW+t9zAY6vbS8a5Tt5fVnNL4qkiRJ0tRoWHft0lX6pcC9MnNHHV93H8Udi1p9JDOfX6/jj6Km+b4z87yR1pfuQCyva40kSZKkOql7aIiIMyn6NDwNaKP4Qt1e2raSoq/DSzPzpgke4kecOKzrWH46wePAr+8knD7K9rHuREiSJEkzXl1DQ0Q8EPgqcH/gX4H7AY+vKPLV0rrnAjdN5BiZ+eRTq+W4jnU4Iu4AFkbEA0fo13B2aXn7ZNVJkiRJmmz1Hj3pLyhCwW9l5lrgC5UbM3MA2EEx6dtMcUNpedEI254yrIwkSZLUdOodGp5KMWLSTVXK/Bh4UJ2P20j/WFq+PiLml1eWJnS7DDgKbJmCekmSJEmTot59Gu7Pr4chHc0AMLfOx61ZRLyGXw9x+ujS8uJSfwuAnZn5gXL5zPxyRPwtcDnwjYi4FuikaGK1AHh5aaI3SZIkqSnVOzQcBH5jjDJLgZ/X+bjjcRHFBHOVzi89yj5QuTEzN0bEN4CXAZcCx4BdwNsz89MNrKskSZI05eodGr4EPD0iHlCar+EEEXE2xZf2a+p83Jpl5oUT3O9DwIfqWxtJkiRp+qt3n4a3A3OA7RHxFKAbijkbSs8/RXGV/p11Pq4kSZJaTG//IH39QwwMHaOvf4je/sGprlLTquudhsz8akRcStF5uLLZzt2l5SBwSWZ+u57HlSRJUuvoGxjiUN8AV928h227DtDTO8D87g7WLj+TDauWMG9OB10dbVNdzaZS98ndMnNLROwEXgo8Drg3xeRntwBXZub3631MSZIktYa+gSF27e/hkq23cnTw2PH1Pb0DbN65l2tu2c+WdStYtmi+waGO6h4aADLzB8CrRtseEffNzP9uxLElSZLUvA4dGTgpMFQ6OniMi7feyo5Nqw0NdVTvPg1VRcTpEfHXwI8m87iSJEma+Xr7B7lq+55RA0PZ0cFjXL19D332caibuoWGiFgUEWsj4mkRcf9h2+ZExGuBPcBr6nlcSZIktYYg2LbrQE1lt+2+A4jGVqiF1OXLe0S8h+Luwf8Drgf2RcRLS9suBL4PvAnoAt4NLKnHcSVJktQ62tuCnt6BmsoePNxPe5uhoV5OuU9DRLyIYtKzY8B3KSLdOcB7IuIwcBXQVlq+KTN/eqrHlCRJUusZHErmd3fUFBwWzO1kcCixW0N91ONOwzqgH7ggMx+emQ8DngQMAZspZn9enpkvNTBIkiRpopJk7fIzayq7dtlCIBtboRZSj9DwSOC6zPxKeUVm3kzRTCko5mX4Zh2OI0mSpBbW3dnOhlVLmN1e/Svs7PZZXLpqCV2dDRkotCXVIzScDvxwhPU/KC2/MsI2SZIkadzmzelgy7oVowaH2e2z2LJuBfPmdExyzZpbPeLXLGCkhmUDAJnZV4djqM56+wcJgva2YHAoSZJu07gkSZrmujraWLZoPjs2rebq7XvYtvsODh7uZ8HcTtYuW8ilzgjdEPX6lmiDsRnCadclSdJM19XRRldHG5evWcrGNeccvwgKaZOkBqnXu3pFRFwx0oaIGBphdWam/6OTzGnXJUlSM6lsJeFXl8aq1yRrMc6Hk7tNgVqnXT90pLbxjyVJktQaTvnLe2bOmsijHpVX7Zx2XZIkSRPll/cW4bTrkiRJmihDQ4tw2nVJkiRNlKGhRZSnXa9Fedp1SZIkCQwNLWM8064/y2nXJUmSVMHQ0CIi4OInnFXTtOsXP+EswtZJkiRJKjE0tIoMvvKjX/HeP1peddr19/7Rcr78o1+RaWqQJElSwdDQItrbgtds+yY/v+sIn3vlE7nkCWexYG4nUPRhuOQJZ/G5Vz6Rn991hNdu+6YdoSVJknScszK3iMGh5LQ57bzh+m/xsAedxh89dhH//soLuNfsDu45OsAXvvMLLvvILr7zs7uPd4R2ZkVJkiSBoaFllDtCb965l2//9G5ed903ed11I5dda0doSZIkVbB5Uovo7mxnw6olNXWEvnTVEro6zZOSJEkqGBpayLw5HWxZt6JqR+gt61Ywb05t8zlIkiSpNRgaWkhXRxvLFs1nx6bVrF+5+ISO0OtXLmbHptUsWzSfLjszSJIkqYJtUFpMV0cbXR1tXL5mKRvXnEN7W5Rmf06bJEmSJGlEfktsUd0VAcEbC5IkSarG5kmSJEmSqjI0SJIkSarK0CBJkiSpKkODJEmSpKoMDZIkSZKqaqnQEBFnR8SmiLghIn4SEf0R8YuI+GRErB5j3xdFxNci4p6IuCsiboqI35usukvD9fYP0tc/xMDQMfr6h+jtH5zqKkmSpCbVakOu/hXwXOA7wGeAg8A5wNOBp0fEKzLzPcN3ioh3ABuBA8D7gU7gecCnIuLlmXnlJNVfom9giEN9A1x18x627TpAT+8A87s7WLv8TDasWsK8OR1O0CepafT2DxLE8XmFkjxh2HBJkyMyc6rrMGkiYh3wX5m5e9j6VcAXgATOysyfVWw7H/gS8CNgRWb2lNafBdwGzAXOzcx9p1Cv25YvX778tttum+hLqEX0DQyxa38Pl2y9laODx07aPrt9FlvWrXBmb0kznhdIpPo777zz2LVr167MPG+8+7ZU86TM3Do8MJTWbwduoriDcP6wzS8pLd9cDgylffYB7wVmAxc3or7ScIeODIwaGACODh7j4q23cujIwCTXTJLqp3yB5IK33cjmnXvp6S0+03p6B9i8cy8XvPVGdu/voW9gaIprKrWOlgoNYyh/yxreMPxJpeXnRtjns8PKSA3T2z/IVdv3jBoYyo4OHuPq7Xvos4+DpBnKCyTS9GNoACJiEfBkoBe4uWL9XGAhcE9lk6UKPygtl9Z4nNtGegDnntpPoFYQBNt2Haip7LbddwDR2ApJUgN4gUSanlo+NETEbOAjFM2MrqhsggScXlreNcru5fVnNKZ20q+1t8XxW/RjOXi4n/Y2Q4OkmccLJNL0NOOGH4iIfcCicezykcx8/iiv1Qb8E/AE4OPAOyZYrZp6k4/W6aR0t2H5BI+tFjE4lMzv7qgpOCyY28ngUGIfQUkzjRdIpOlpxoUGilGMjoyj/E9HWlkKDNcAzwE+ATw/Tx5Kqnwn4XRGNtadCKlukmTt8jPZvHPvmGXXLltIjVlWkqYVL5BI09OMCw2Z+eRTfY2IaAc+ShEYPgq8MDNPGoIhMw9HxB3Awoh44Aj9Gs4uLW8/1TpJY+nubGfDqiVcc8v+qm19Z7fP4tJVS+hyHHOpoZw/oDG8QCJNTy3XpyEiOoFrKQLDh4EXjBQYKtxQWl40wranDCsjNdS8OR1sWbeC2e0j/+qW52mYN6djkmsmtY6+gSHuvPsI7/z87Zz/li9y9us/y/lv+SLv/Pzt3HnoiMOAnqLyBZLRPufKvEAiTa6WCg2lTs/XAc8ANgMXZ2b14RngH0vL10fE/IrXOgu4DDgKbKl/baWTdXW0sWzRfHZsWs36lYtZMLcTKG7Rr1+5mB2bVjuxm9RAzh8wObxAIk0/rTYj9BZgHfBL4B8Y+Z7mTZl507D93glcDhyguEvRCTwXuDfw8sy88hTr5YzQGrfhTSMgveImNdidh45wwVtvHLOJ4I5Nq7nfvDmTWLPm0zcwxKEjA1y9fQ/bdt/BwcP9LJjbydplC7nUGaGlCTmVGaFb7RvG4tLyPsCfVyl3U+WTzNwYEd8AXgZcChwDdgFvz8xPN6Ce0pgq2077d1NqvPHOH7BxzVKD/Cno6mijq6ONy9csZeOac7xAIk2xlvqty8wLT2HfDwEfql9tJEkzyXjnD9i45pwG16g1eIFEmh5aqk+DJEkT5fwBklqZoUGSpBqU5w+oRXn+AElqFoYGSZJqUJ4/oBbOHyCp2RgaJEmqgfMHSGplhgZJkmrk/AGSWpWhQZKkGjnBoqRW5b1TSZLGwfkDJLUiP90kSZoA5w+Q1EpsniRJkiSpKkODJEmSpKoMDZIkSZKqMjRIkiRJqsrQIEmSJKkqQ4MkSZKkqgwNkiRJkqoyNEiSJEmqytAgSZIkqSpDgyRJkqSqDA2SJEmSqjI0SJIkSarK0CBJkiSpKkODJEmSpKoMDZIkSZKqMjRIkiRJqsrQIEmSJKkqQ4MkSZKkqgwNkiRJkqoyNEiSJEmqqn2qKyDVqrd/kCBobwsGh5Ik6e70FJYkSWo0v3Fp2usbGOJQ3wBX3byHbbsO0NM7wPzuDtYuP5MNq5Ywb04HXR1tU13NERl0JElSM/Dbi6a1voEhdu3v4ZKtt3J08Njx9T29A2zeuZdrbtnPlnUrWLZo/rQKDjM56EiSJA1nnwZNa4eODJwUGCodHTzGxVtv5dCRgUmu2ejKQeeCt93I5p176ekt6lYOOhe89UZ27++hb2BoimsqSZJUG0ODpq3e/kGu2r5n1MBQdnTwGFdv30Nf/+Ak1ay6mRh0JEmSqrF5kqatINi26wAAD3vQaTz/cYv4rYfcj3vN7uCeowN84Tt38pGv7ufbP72bbbvvYOOac6a4xuMPOhvXLKXLPg6S/X8kaZprqU/kiPgN4LXAecAiYD7wK+BHwAeBazJzxMu/EfEi4DLgocAQsBt4R2Z+ehKq3pLa24K7jwzy5mc+nPN/8z58+Cv7eNvnvne8f8Azly3kyj9czpd/+Ev+/F+/TXtbTHWVTwg6Y5kuQUeaSvb/kaSZodWaJz0Y+CPgLuB64J3ApygCxAeBz0fESUEqIt4BbAUeCLwfuAZ4BPCpiHjZZFS8FQ0OJW9Z+wjud9ocLvq7m9nypX0n9A/Y8qV9XPR3N3P/0+fwN2sfweBQTnGNi6BTruNYDh7unxZBR5oq9v+RpJmj1ULDl4H5mbkmM1+Sma/LzA0UYeIm4EJgbeUOEXE+sJHibsQjM/NVmXkZxd2Kg8A7IuKsyfsRWkgkj3/wvXnZR3dV7R9w2Ud2cf6D703E1IeGwaFkfndHTWUXzO2cFkFHmir2/5GkmaOlQkNm9mfmSX+dSk2Sri89PXvY5peUlm/OzJ6KffYB7wVmAxfXvbIiE7Z8aV9N/QO2fGkfOQ2+fyfJ2uVn1lR27bKFwDSotDQFZupAB5LUqloqNIwmItqAp5aefmPY5ieVlp8bYdfPDiujOhpP/4Drdt8BTH1Tn+7OdjasWsLs9uq/WrPbZ3HpqiV2glbLGm//n+nw+y1Jrawlv7FExH2Al1H8Fbov8NvAbwIfBT5dUW4usBC4JzN/NsJL/aC0XFrjcW8bZdO5tdW8tczU/gHz5nSwZd0KLh6l2cXs9llsWbeCeXNqa8Y02RzFRpNhpv5+S1KratVvAvcB/qLieQLvAF6XeUIjl9NLy7tGeZ3y+jPqWjsBv+4fUMsXi3L/gOkwyEpXRxvLFs1nx6bVXL19D9t238HBw/0smNvJ2mULuXSajgjjKDaaTDP191uSWtWMCw0RsY9itKNafSQzn1+5IjO/V7xUtFHcSXgW8JfAyoj43cw8OM5q1dQwPTPPG2l96Q7E8nEes+mV+wds3rl3zLLTrX9AV0cbXR1tXL5mKRvXnHP8qj3ktGySVB7FZnin1PIoNtfcsp8t61awbNF8g4PqYib/fktSK5qJfRp+BHx/HI+fjvZCmTmUmT/OzHcDG4DHUYSHsvKdhNNP2vnE9aPdidApaIb+Ad2d7XR1ttHRNouuzrZpWUdwFBtNvmb4/ZakVjLjQkNmPjkzzx3H4/+r8aXLnZovrDjWYeAO4F4R8cAR9imPtHT7hH8gVVXuHzDaF4vp3j9gJnAUG00Vf78laeaYcaGhgRaWlsO/Ed1QWl40wj5PGVZGdVbZP2D9ysUsmNsJFG2c169czI5Nq20yc4ocxUZTxd9vSZo5Wup+b0Q8FvhmZvYOW38v4N2lp/82bLd/BF4AvD4iri/P1VCa0O0y4CiwpZH1bnUzrX/ATOMoNppK/n5L0szQap/IrwUujIjtwI+BXuA3KO4YnEExY/TfVO6QmV+OiL8FLge+ERHXAp3Ac4EFwMtLE72pwSqH/fTCY/04io2mA3+/JWl6a7XQ8H7gMLCCou9CN9AD3AZ8AvhgZp7UYDszN0bENyjmdrgUOAbsAt6emZ8eXl6aSRzFRpIkjaWlQkNm/hsnNz+qdd8PAR+qb42kqVcexeaaW/ZX7QztKDaSJLUuO0JLchQbSZJUlaFBkqPYSJKkqmxnIAlwFBtJkjQ6vwlIOoGj2EiSpOFsniRJkiSpKkODJEmSpKoMDZIkSZKqMjRIkiRJqsrQIEmSJKkqQ4MkSZKkqgwNkiRJkqoyNEiSJEmqytAgSZIkqSpDgyRJkqSqDA2SJEmSqjI0SJIkSarK0CBJkiSpKkODJEmSpKoMDZIkSZKqMjRIkiRJqsrQIEmSJKkqQ4MkSZKkqgwNkiRJkqoyNEiSJEmqytAgSZIkqSpDgyRJkqSqDA2SJEmSqjI0SJIkSarK0CBJkiSpKkODJEmSpKoMDZIkSZKqMjRIkiRJqsrQIEmSJKkqQ4MkSZKkqgwNkiRJkqpq+dAQEZsjIkuP36xS7kUR8bWIuCci7oqImyLi9yazrpIkSdJUaOnQEBFPAy4B7hmj3DuArcADgfcD1wCPAD4VES9rcDUlSZKkKdWyoSEi7ksRAD4O3Fal3PnARuBHwCMz81WZeRlwHnAQeEdEnNX4GkuSJElTo2VDA3B1aXnZGOVeUlq+OTN7yiszcx/wXmA2cHHdaydJkiRNEy0ZGiJiHfBM4CWZ+asxij+ptPzcCNs+O6yMJEmS1HTap7oCky0iFgHvBq7JzOvHKDsXWAjck5k/G6HID0rLpTUee7RmUOfWsr8kSZI0FVrqTkNEzAI+RNHx+U9r2OX00vKuUbaX159xajWTJEmSpq8Zd6chIvYBi8axy0cy8/mlf78KWAX8bmX/hDrImgplnjfS+tIdiOV1rI8kSZJUNzMuNFCMYnRkHOV/ChARZwNvBrZk5mdq3Ld8J+H0UbaPdSdCkiRJmvFmXGjIzCdPcNeHURrpKCJGG+3oBxEB8KzMvD4zD0fEHcDCiHjgCP0azi4tb59gnSRJkqRpb8aFhlOwD9g8yrbfBR4A/D/g7lLZshuAFwAXAVuG7feUijKSJElSU2qZ0JCZXwfWj7QtIm6iCA2vy8wfDtv8jxSh4fURcX25L0RpQrfLgKOcHCYkSZKkptEyoWGiMvPLEfG3wOXANyLiWqATeC6wAHh5aaI3SZIkqSkZGmqQmRsj4hvAy4BLgWPALuDtmfnpKa2cJEmS1GCGBiAzL6yhzIco5niQJEmSWkpLTe4mSZIkafwMDZIkSZKqMjRIkiRJqsrQIEmSJKkqQ4MkSZKkqgwNkiRJkqoyNEiSJEmqytAgSZIkqSpDgyRJkqSqnBFakiRJmiS9/YMEQXtbMDiUJEl35/T/Sj79ayhJkiTNcH0DQxzqG+Cqm/ewbdcBenoHmN/dwdrlZ7Jh1RLmzemgq6Ntqqs5KkODJEmS1EB9A0Ps2t/DJVtv5ejgsePre3oH2LxzL9fcsp8t61awbNH8aRsc7NMgSZIkNdChIwMnBYZKRwePcfHWWzl0ZGCSa1Y7Q4MkSZLUIL39g1y1fc+ogaHs6OAxrt6+h77+wUmq2fgYGiRJkqQGCYJtuw7UVHbb7juAaGyFJsjQIEmSJDVIe1vQ01tbs6ODh/tpbzM0SJIkSS1lcCiZ391RU9kFczsZHMoG12hiDA2SJElSgyTJ2uVn1lR27bKFgKFBkiRJaindne1sWLWE2e3Vv3bPbp/FpauW0DVNJ3ozNEiSJEkNNG9OB1vWrRg1OMxun8WWdSuYN6e2ZkxTwdAgSZIkNVBXRxvLFs1nx6bVrF+5mAVzO4GiD8P6lYvZsWn1tJ7YDZwRWpIkSWq4ro42ujrauHzNUjauOYf2tih1es5p2ySp0vSvoSRJktQkuisCwjS+sXASmydJkiRJqsrQIEmSJKkqQ4MkSZKkqgwNkiRJkqoyNEiSJEmqytAgSZIkqSpDgyRJkqSqDA2SJEmSqjI0SJIkSarK0CBJkiSpKkODJEmSpKoiM6e6Di0vIn7V1dW14CEPechUV0WSJElN6rvf/S59fX0HM/Pe493X0DANRMRe4DRg3xRXZaLOLS2/N6W1aA2+15PH93ry+F5PDt/nyeN7PXl8r8fnLODuzFw83h0NDTplEXEbQGaeN9V1aXa+15PH93ry+F5PDt/nyeN7PXl8ryePfRokSZIkVWVokCRJklSVoUGSJElSVYYGSZIkSVUZGiRJkiRV5ehJkiRJkqryToMkSZKkqgwNkiRJkqoyNEiSJEmqytAgSZIkqSpDgyRJkqSqDA2SJEmSqjI0SJIkSarK0KBRRcS9I2J9RFwXET+MiL6IuCsidkbEH0fErGHlz4qIrPL42FT9LDNBROyr8t79fJR9zo+Iz0TEwYjojYhvRMQrI6Jtsus/U0TEujHO04yIoYryntdjiIhnR8TfR8SOiLi79L5cM8Y+4z53I+JFEfG1iLin9Fl0U0T8Xv1/oulrPO91RJwdEZsi4oaI+ElE9EfELyLikxGxepR9xvr9eEljf8LpYZzv84Q/Izynx/1eb63h8/uLw/bxnK6T9qmugKa15wDvA34G3Aj8GLg/sBb4APCUiHhOnjxD4H8B14/wet9qXFWbxl3A342w/p7hKyLiGcC/AEeAjwMHgacB7wKeQPH/p5N9HXjjKNsuAJ4EfHaEbZ7Xo3sD8CiK8/QAcG61whM5dyPiHcDG0uu/H+gEngd8KiJenplX1uuHmebG817/FfBc4DvAZyje53OApwNPj4hXZOZ7Rtn3kxS/K8P958SqPeOM65wuGddnhOf0ceN5r68H9o2y7QXAEkb+/AbP6VOXmT58jPig+PL0NGDWsPUPoAgQCfx+xfqzSuu2TnXdZ+KD4oNwX41lTwPuBI4Cj6lYPwf4cun/4XlT/TPNtAfwldJ79/SKdZ7XY79vq4GzgQAuLL1f14xSdtznLnB+af0PgfnD/m9+RRE+zprq92EavtfrgGUjrF8F9Jf+Dx44wj4JrJvqn3UGvc/j/ozwnJ7Ye13lNc4Aekvn9H2GbfOcrtPD5kkaVWbekJmfysxjw9b/HPjH0tMLJ71iAng2cF/gY5l5/CpJZh6huGoD8CdTUbGZKiIeDjwOuAP4tymuzoySmTdm5g+y9Bd6DBM5d8vNB96cmT0V++wD3gvMBi6eYPVnlPG815m5NTN3j7B+O3ATxZXt8+tfy5lvnOf0RHhOl9TpvX4B0AVsy8xf1qlqGsbmSZqogdJycIRtD4qIDcC9Ka6YfCUzvzFpNZvZZkfE84H/BRwGvgHcnJlDw8o9qbT83AivcTPFFZfzI2J2Zh5tWG2by4bScvMI7zd4XtfLRM7davt8FvizUpm/qGdFm1y1z3CAR0fEKynuAN0B3JiZByajYjPYeD4jPKfr68Wl5dVVynhOnyJDg8YtItqBF5aejvSB99ulR+U+NwEvyswfN7Z2M94DgH8atm5vRFxcujpYdk5pefvwF8jMwYjYCzyMon3ndxtS0yYSEV3A84FjFP11RuJ5XR/jOncjYi6wELgnM382wuv9oLRc2ojKNqOIWAQ8mSKg3TxKsVcMez4UER8AXlm6K6ST1fQZ4TldXxHxeOARwO2ZeWOVop7Tp8jmSZqItwAPBz6Tmf9esb6XouPdecD80mMVRSfqC4Evlj4sNbItFH/IHwDMpfgQvIqijetnI+JRFWVPLy3vGuW1yuvPqHstm9P/oXivPpuZPxm2zfO6vsZ77nqu11FEzAY+QtH85YrKpjEle4GXU4S7ucCDKH4/9lHcjfvgpFV25hjvZ4TndH1dWlq+f5TtntN1YmjQuETEn1KM9vA9ijaEx2XmnZn555m5KzP/p/S4GVgDfBX4TWD9pFd6hsjMN5b6kfwiM3sz81uZ+RLgbynaal4xjpeL8svWu55NqvxH56rhGzyvJ91Ez13P9TGUhrP9J4oRqj4OvGN4mczcnplXZubtpc+hn2Xm/6PorNoD/MGwCxgtr4GfEZ7TY4iI0ykCQD+wdaQyntP1Y2hQzSLiMuDdFMP3rc7Mg7Xsl5mD/LrJxxMbVL1mVu50Xvnela9Enc7IThtWTqOIiIdSdAY9QDEsZU08rydsvOfuWOXHumorjgeGayiGs/0E8PzxdDwt3YEr/354vtegymeE53T9PB/oZgIdoD2nx8/QoJqUOg9dSTHe9OrSCErj8d+lpc04xu/O0rLyvft+aXlSm9dSn5PFFB0c9zS2ak1hrA7Q1Xhej9+4zt3MPEzRafFeEfHAEV7v7NLypD4SKpTe13+mmAPgo8Aflr7Qjpfn+/id9J55TtdVuQP0SXeJa+Q5PQ6GBo0pIjZRTLr0dYrAcGf1PUb0uNLSL7Hj9/jSsvK9u6G0vGiE8k+kuPLyZUdOqi4i5lA0szsGbJ7AS3hej99Ezt1q+zxlWBlViIhO4FqKOwwfBl4wgXBc9tjS0vO9dqN9RnhOn6KIeCzFpHC3Z+ZNE3wZz+lxMDSoqoj4M4qOz7cBT652+y8iHlv6AzV8/ZOAV5Wejjg1fKuLiIdFxIIR1i+iuMMDJ7531wK/BJ4XEY+pKD8HeFPp6fsaVN1m8hyKToufGaEDNOB53QATOXfLTfReHxHzK/Y5C7iMYkKnLY2q8ExV6vR8HfAMilB88fB5d0bY54IR1kVEvJbiAsYvGXnUvJY1wc8Iz+lTV+6LVm2YVc/pOorGzVuimS4iXkTRsWgI+HtGbl+5LzO3lsrfRDFU4k0U7cMBHsmvx6P+s8x8EzpJRFwBvIZitI29wCHgwcDvUowp/RngWZnZX7HPMym+gB0BPgYcBJ5OMULEtcD/aeDERE0hInYAKylmgP7UKGVuwvO6qtK5+MzS0wcAv0Nx5W5Had0vM/PVw8qP69yNiHcCl1P8H1xLMTHZcynGxH95Zl5JCxjPex0RWyhmw/0l8A+M3LH2psqrtBGRFM1ibqVoQnM6Rcfph1OMEvSszPx8HX+kaWmc7/NNTOAzwnO6MN7Pj9I+pwE/BTqAhWNc0PScrpecBtNS+5ieD4rRenKMx00V5f8Y+DTFMGb3UFwp+THFKB0XTPXPM50fFMPz/TPFqFT/QzHx0n8DX6CYEyNG2e8JFIGiB+gDvklxZattqn+m6f4AHlI6h39S7f3yvK7pvRzrs2LfCPuM+9wFXkTxh/8wRbDeDvzeVP/80/W9pvgSO9Zn+BXDXv/tpff1pxShrrf0uXQlsGSqf/5p+j5P+DPCc3rCnx9/Utr2zzW8vud0nR7eaZAkSZJUlX0aJEmSJFVlaJAkSZJUlaFBkiRJUlWGBkmSJElVGRokSZIkVWVokCRJklSVoUGSJElSVYYGSZIkSVUZGiRJkiRVZWiQJEmSVJWhQZIkSVJVhgZJ0rQWERdGREbEFQ0+zlml42xt5HEkaSYyNEiSThARbRHx4ojYHhEHI2IgIu6MiG9ExAci4ulTXcfJFBFbS2HirKmuiyRNlfaproAkafqIiDbg08BFwP8A/wYcABYADwb+EDgX+NdJrNbXgIcAv2zwce4oHeeuBh9HkmYcQ4MkqdIfUASG/wJWZeYJX6Ajoht47GRWKDN7ge9NwnEGJuM4kjQT2TxJklTp/NJy6/DAAMUX+My8cfj6iPiDiLgxInoi4khEfDci3hARs0comxFxU0TcJyKujoifRcTRiPh2RFw8QvlR+zRExNkR8eGIuCMi+iPip6XnZ49Q9orS61wYEX8YEV+NiHsiYl9p+0l9GiIigReVnu4tbc+KfW6JiKHRmi5FxKtL5TeOtF2SZgrvNEiSKv2qtFxa6w4RsRm4hKIZ0zaKZk2PA/4KeHJE/HZmDg7b7QzgS0A/cC0wB3g28MGIOJaZH6rhuCuA/wDmUTSX+g5F06k/Ap4REU/OzP8cYdeNwG8DnwJuBE6vcpg3As8EHgW8u/SzUbH8B+BDwIuB14+w/3rgaKmMJM1YhgZJUqVtwCbgJRExD7gOuC0z949UOCLWUQSG64A/ysy+im1XAH8BXEbxhbvSo4DNwIbMHCqVfxfwjdLxq37JjogAPgycBjw/Mz9Sse25wMeAayLioZl5bNjuTwIen5m7qx0DIDOvKN1FeBTwd5m5b1iRjwN/C1wSEVeUmjiV63EhcA7w0cxsdH8MSWoomydJko4rfZF+PvCL0vJfgH0R8auIuC4injZsl1cAg8AllYGh5K8o7lz80QiH6gUuLweG0rG/Q3H34SGlwFLN+RR3Fb5SGRhKr/NxYCfFF/aVI+x7dS2BoRaZeRTYAjwAGD6q1IbS8qp6HEuSppJ3GiRJJ8jMT0TEdcBqii/dy0rLZwLPjIgPA+uALoor8L8EXllc/D/JUYoRiYb7QWbePcL6n5SWZwCHqlRzeWl5wyjbb6io+83Dtn2tyutOxPsomjxtoAhZRMR9gGcB383M4ceXpBnH0CBJOkmpmc3nS4/yUKy/D3wQeCFFc6RbgQDuS9EMaTz+Z5T15b4PbWPsX+6H8LNRtpfXnzHCtp+P8drjkpl7IuLfgd+JiAdn5o8oQtVsvMsgqUnYPEmSNKbMHMrMTwDvKq16Er+ez2B3Zka1RwOqVD72A0bZ/sBh5Spl/avD+ygC1ItLz9cDRyj6XUjSjGdokCSNR7nJUGTmPcC3gYdFxIJJrke5T8KFo2wvr99Vh2OV+11Uu/vxaeDHwMURsYaiP8UnMrOnDseXpClnaJAkHVeab+G3I+Kkvw8R8QB+fSW93E7/b4FOiqFSzxhhn/kRsXz4+jr4EvB9YGVEPHvYMZ8NPBG4naJD9KkqD0P7v0YrUBqh6WrgfhRNuAD+sQ7HlqRpwT4NkqRKj6UYEennEbET2Ftavxj4XYrOz5+kmFuBzPxgRJwHvBT4Ualt/4+BBaV9nkgxutBL6lnJzMyIeBHwBeDjEfFJitmcz6HosH0IeOEIw61OxBeB/wu8PyKuBe4B/iczrxxW7gPAnwMLgW9m5lfqcGxJmhYMDZKkSu8EfgD8FvBI4HcoJl77FXAT8FGKeQeO9wvIzMsi4rMUweC3KDofH6QID28HrmlERTPzq6UJ3t5QOu7TKEZy+mfgrzLz+3U6zr+XZnR+MfAqijsr+4Erh5X7RUR8hiK02AFaUlOJis99SZI0QaUmXT8E7g88cJQhZSVpRrJPgyRJ9fFsiiZZHzYwSGo23mmQJOkURMRrKPpwXErR7Pdhmbl/amslSfVlaJAk6RRERAIDwHeA/5uZX5jiKklS3RkaJEmSJFVlnwZJkiRJVRkaJEmSJFVlaJAkSZJUlaFBkiRJUlWGBkmSJElVGRokSZIkVWVokCRJklSVoUGSJElSVYYGSZIkSVUZGiRJkiRVZWiQJEmSVJWhQZIkSVJVhgZJkiRJVf3/fb4jlxkBJWQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 261, "width": 390 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.scatterplot(x = df_income['Seniority'], y = mod_seniority.resid)\n", "plt.axhline(y = 0, linestyle = \"dotted\")\n", "plt.ylabel(\"Residuals\")" ] }, { "cell_type": "markdown", "id": "41d3d9bf", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Calculating $RSS$\n", "\n", "> The **residual sum of squares** is the sum of squared deviations between each prediction and the real values of $Y$.\n", "\n", "$RSS = \\sum_i^N (\\hat{y}_i - y_i)^2$\n", "\n", "**Note**: A higher value is worse (i.e., more error)." ] }, { "cell_type": "code", "execution_count": 17, "id": "af9528ab", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "### define a helper function!\n", "def rss(y_pred, y):\n", " return sum((y_pred - y)**2)" ] }, { "cell_type": "code", "execution_count": 18, "id": "d4206c70", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "3982.5065854722675" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## RSS for \"Education\" model\n", "rss(mod_edu.predict(), df_income['Income'])" ] }, { "cell_type": "markdown", "id": "61eec71e", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Check-in\n", "\n", "Calculate the $RSS$ for your `Seniority` model. Is it better or worse? Does this match your intuition from the visual comparisons?" ] }, { "cell_type": "code", "execution_count": 19, "id": "c4840aab", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "### Your code here" ] }, { "cell_type": "markdown", "id": "754e79f8", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Solution" ] }, { "cell_type": "code", "execution_count": 20, "id": "0e50ffb0", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "15477.269661883036" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## RSS for \"Seniority\" model\n", "rss(mod_seniority.predict(), df_income['Income'])" ] }, { "cell_type": "markdown", "id": "ec61cafe", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Visually comparing $RSS$" ] }, { "cell_type": "code", "execution_count": 22, "id": "e1941d9e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyMAAAIMCAYAAADmXnOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAAA/RElEQVR4nO3deZhlVX3u8e8rCCJKA0Yj14khgGhwYAgKkVERlQhc4YIkihD1ogwKGCUBmZQMgjgHohHBoAJ2LnAhYkBmRSGAXhJBQKRFESXIJFPL8Lt/7H30cDinuqq7unfXqe/nec6zuvZea699Cp5T9dZaa69UFZIkSZK0pD2l6xuQJEmSNDsZRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqxLJd34AWjyS3ACsB8zq+FUmSJI231YH7qmqNqTaccWEkyc7AFsArgJcDzwS+UlV/MUGbAG8H9gReBqwA/BL4D+DQqrpxSJs9gH2AlwCPAd8Hjq2qc0b0sQJwMLAb8CLgPuBi4PCqun5Em+cDRwHbAc8CbgfOBI6sqrtHfxcmZaUVVlhh1fXWW2/VRbyOJEmSNNL111/PQw89tFBtZ1wYAQ6lCSH3Az8HXjxR5SRPA74ObA/cAHwV+A3wP4DXAOsANw60ORY4qL3+F4DlaELG2Un2q6rPDtRfHjgf2Ay4CvgU8AJgF+BNSbauqisG2qwFXA48BzgL+BHwJ8D7gO2SbFZVv570d+XJ5q233nqrXn311YtwCUmSJGliG264Iddcc828hWk7E8PIATQh4cc0IyQXLaD+x2mCyN/RjII83n8yyVMHvt6UJojcDGzcG6FIcgxwNXBsknOqal5fswNpgshcYNdeH0lOoxnpODHJ+gN9/yNNENm/qj7T1/9x7Xs8Gth7Ae9NkiRJmrFm3AL2qrqoqm6qqlpQ3Xb0YW+a6ViHDAaR9nqPDBzqBYCj+6dKteHjc8DyNNO9en2kr80H+/uoqrOAy2imem3R12ZNYFua9RyfG+j/cOAB4G1JVlzQe5QkSZJmqhkXRqborTTv8WRgpSR/keSvk7w7yR+NaLN1W35zyLlzB+oArAW8ELixqm6ZZJvev88bDEhV9RvgO8DTgVeNuEdJkiRpxpuJ07SmYuO2nEMz7epZfecqyfE006QeA2hHIp4H3F9Vtw+53k1tuU7fsXXb8kmL4BexzbZtmwtG1KG951GLQiZcSyNJkiR1bdxHRp7TlkfRLCxfn+bpW9vQhJP3Ah/uqz+nLe8dcb3e8ZU7aCNJkiSNlXEfGVmmLW8Hdqqq3jPHLmwfEXwNcGCSv62q307hugtcr9Ini7NNVW049ALNiMkGU+hTkiRJWqLGfWSktwD9m31BBICq+n/ALTQjJeu1h3sjEnMYbtiIxoLarDRNbSRJkqSxMu5h5Ia2vGfE+V5YWQGgqh4AbgOekWS1IfXXbsv+tR69PtZhuOlqI0mSJI2VcQ8jvcXffzx4ot2osPdL/7y+Uxe25XZDrveGgTrQrD25FVgnyRqTbNPbG2XbJE/4b5DkmTR7ljwEfG/I9SRJkqSxMO5h5FzgJ8Drk7xu4NyHaaZJXVJVv+w7fkJbHpJkld7BJKsD+wDzgS/1jrf7nfTafKw/XCTZgWaX9+uAS/ra3AycB/Su2e9IYEXgy+1IjSRJkjSWZtwC9iQ7Aju2Xz63LV+d5KT233dW1QcAquq3Sfag+cX/3CRnAD+leeTv5sB/A+/uv35VXd7ugn4gcG2SucBywK7AqsB+A7uvAxxHs8v7zsAVSS6g2XtkF+BBYK8hGy6+F7gc+HSSbYDrgU2ArWimZx0ypW+MJEmSNMPMuDACvALYY+DYmu0LmrDxgd6Jqvp2ko1odjbfiuZxub8CPg98pKp+PthBVR2U5FpgX5qw8jjNk7eOqapzhtSfn+S1wMHA7sABwH3AmcDhVXXdkDY3t/d1FM2UsDfSPPXr08CRVXXXJL4XkiRJ0oyVZpaRxk2SqzfYYIMNrr561J6IkiRJ0qLbcMMNueaaa64ZteXERMZ9zYgkSZKkpZRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkTszER/tqhtnwr77c9S1ImgGuPubtXd+CJGkJc2REkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJ2ZcGEmyc5LPJLksyX1JKskpU2j/xbZNJfmjCertkeTKJPcnuTfJxUm2n6D+CkmOTHJDkoeT3JHk9CTrTdDm+UlOTPKLJPOTzEvyySSrTPb9SJIkSTPVjAsjwKHAvsArgNum0jDJnwF7AfcvoN6xwEnAasAXgFOA9YGzk+w7pP7ywPnAYcB9wKeAbwE7AVcl2WRIm7WAq4E9gSuBTwA/Ad4HfDfJs6by3iRJkqSZZiaGkQOAdYCVgPdMtlGSZ9MEi9NoQsCoepsCBwE3Ay+rqgOqah9gQ+Au4Ngkqw80OxDYDJgLbFJVH6qq3YGdgacDJyYZ/F7/I/AcYP+q2rGqDq6qrWlCybrA0ZN9b5IkSdJMNOPCSFVdVFU3VVVNsenn23KfBdTbuy2Prqq7+/qdB3wOWJ5mNAOAJOlr88GqeryvzVnAZcBLgC362qwJbAv0rtnvcOAB4G1JVpzE+5IkSZJmpBkXRhZGkncAOwJ7V9WvF1B967b85pBz5w7UAVgLeCFwY1XdMsk2vX+f1x9eAKrqN8B3aEZUXrWAe5UkSZJmrGW7voHFLcmLaNZwnFJVZy6g7orA84D7q+r2IVVuast1+o6t25Y3jrjswrbZtm1zwQLuedSUsxdP1E6SJEnq2liPjLTrNE6mWbC+/ySazGnLe0ec7x1fuYM2kiRJ0lgZ95GRA2jWarypf/3HNJjKepUszjZVteHQCzQjJhtMoU9JkiRpiRrbkZEka9M8kepLVfWNSTbrjUjMGXF+2IjGgtqsNE1tJEmSpLEytmEEeCntk6/6NjmsJMXvn2x1U3tsR4CqeoBm75JnJFltyDXXbsv+tR43tOU6DDddbSRJkqSxMs7TtOYBXxxx7k3Ac4Gv02xSOK/v3IXA24DtgC8NtHtDX52em4FbgXWSrDHkiVrD2lzUltsmeUr/E7WSPJNmz5KHgO+NuH9JkiRpxhvbMFJVPwDeOexckotpwsjfVNWPB06fQBNGDklyZm+tSbvR4T7AfPpCSlVVkhOAvwU+lmTXXrhIsgPwGuA64JK+NjcnOY/miVn7AJ/p6/9IYEXgn9qRGkmSJGkszbgw0k6p2rH98rlt+eokJ7X/vrOqPrCw16+qy5McR7Or+rVJ5gLLAbsCqwL7tRsg9jsO2J5mx/UrklxAs/fILsCDwF6D+4kA7wUuBz6dZBvgemATYCua6VmHLOx7kCRJkmaCGRdGgFcAewwcW7N9AfwUWOgwAlBVByW5FtgXeDfwOHANcExVnTOk/vwkrwUOBnaneYrXfcCZwOFVdd2QNjcn2Qg4imZK2BuB24FPA0dW1V2L8h4kSZKkpd2MCyNVdQRwxCJeY8tJ1DmZZo+SyV7zIeDw9jXZNj8D9pxsfUmSJGmcjPPTtCRJkiQtxQwjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpEzMujCTZOclnklyW5L4kleSUEXXXTvKhJBcm+VmS3yb5VZKzkmy1gH72SHJlkvuT3Jvk4iTbT1B/hSRHJrkhycNJ7khyepL1Jmjz/CQnJvlFkvlJ5iX5ZJJVJv8dkSRJkmamGRdGgEOBfYFXALctoO5HgL8H/hD4BvBx4DvAm4ALk+w/rFGSY4GTgNWALwCnAOsDZyfZd0j95YHzgcOA+4BPAd8CdgKuSrLJkDZrAVcDewJXAp8AfgK8D/hukmct4L1JkiRJM9qyXd/AQjgA+DnwY2AL4KIJ6n4T+Ieq+n7/wSRb0ISHY5J8vapu7zu3KXAQcDOwcVXd3R4/hiY8HJvknKqa13fJA4HNgLnArlX1eNvmNOBM4MQk6/eOt/4ReA6wf1V9pq//49r3eDSw96S+I5IkSdIMNONGRqrqoqq6qapqEnVPGgwi7fFLgIuB5YBNB073AsDRvSDStpkHfA5YnmY0A4Ak6Wvzwf7AUVVnAZcBL6EJTr02awLbAr1r9jsceAB4W5IVF/QeJUmSpJlqxoWRafRIWz46cHzrtvzmkDbnDtQBWAt4IXBjVd0yyTa9f583MFpCVf2GZirZ04FXjbx7SZIkaYabidO0FlmSFwHbAA8Cl/YdXxF4HnB//9StPje15Tp9x9ZtyxtHdLewbbZt21wwok7vnq8ecerFE7WTJEmSujbrwki72PwrNNOtPtg/FQuY05b3jmjeO75yB20kSZKksTKrwkiSZYB/oVlsfhpw7EJeaoHrVfq7XZxtqmrDoRdoRkw2mEKfkiRJ0hI1a9aMtEHkFGAX4HTgL4Ysgu+NSMxhuGEjGgtqs9I0tZEkSZLGyqwII0mWBb4G7AZ8Fdi9qgYXrlNVD9DsXfKMJKsNudTabdm/1uOGtlyH4aarjSRJkjRWxj6MJFmOZv+PXYAvA2+rqscmaHJhW2435NwbBupAsx/JrcA6SdaYZJve3ijbJnnCf4Mkz6SZRvYQ8L0J7lOSJEma0cY6jLSL1c8AdgC+COw5+CjdIU5oy0OSrNJ3rdWBfYD5wJd6x9upXr02H+sPF0l2AF4DXAdc0tfmZuA8oHfNfkcCKwJfbkdqJEmSpLE04xawJ9kR2LH98rlt+eokJ7X/vrOqPtD++wTgjcCdNNOvDmv2KHyCi6vq4t4XVXV5uwv6gcC1SebSbI64K7AqsN/A7usAxwHbAzsDVyS5gGbvkV1oHh+815AQ9F7gcuDTSbYBrgc2AbaimZ51yIK/G5IkSdLMNePCCPAKYI+BY2u2L4CfAr0w0ps29QfAYRNc8+L+L6rqoCTXAvsC7wYeB64BjqmqcwYbV9X8JK8FDgZ2Bw4A7gPOBA6vquuGtLk5yUbAUTRTwt4I3A58Gjiyqu6a4H4lSZKkGW/GhZGqOgI4YpJ1t1yEfk4GTp5C/YeAw9vXZNv8DNhz6ncnSZIkzXxjvWZEkiRJ0tLLMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUiRkXRpLsnOQzSS5Lcl+SSnLKAtpsmuQbSe5K8mCSa5O8P8kyE7TZI8mVSe5Pcm+Si5NsP0H9FZIcmeSGJA8nuSPJ6UnWm6DN85OcmOQXSeYnmZfkk0lWmdx3Q5IkSZq5ZlwYAQ4F9gVeAdy2oMpJdgAuBTYHzgA+BywHfAI4dUSbY4GTgNWALwCnAOsDZyfZd0j95YHzgcOA+4BPAd8CdgKuSrLJkDZrAVcDewJXtvfzE+B9wHeTPGtB702SJEmayZbt+gYWwgHAz4EfA1sAF42qmGQlmjDxGLBlVV3VHv8wcCGwc5LdqurUvjabAgcBNwMbV9Xd7fFjaMLDsUnOqap5fV0dCGwGzAV2rarH2zanAWcCJyZZv3e89Y/Ac4D9q+ozff0f177Ho4G9p/atkSRJkmaOGTcyUlUXVdVNVVWTqL4z8Gzg1F4Qaa/xMM0IC8B7Btr0AsDRvSDStplHM6qyPM1oBgBJ0tfmg/2Bo6rOAi4DXkITnHpt1gS2BXrX7Hc48ADwtiQrTuI9SpIkSTPSjAsjU7R1W35zyLlLgQeBTdtpVpNpc+5AHYC1gBcCN1bVLZNs0/v3eQOjJVTVb4DvAE8HXjXkepIkSdJYmInTtKZi3ba8cfBEVT2a5BbgpcCawPXtSMTzgPur6vYh17upLdeZTB+L2Gbbts0FI+oAkOTqEadePFE7SZIkqWvjPjIypy3vHXG+d3zlhay/JNtIkiRJY2XcR0YWJG05mfUn/aZSf2H6mHSbqtpw6AWaEZMNptCnJEmStESN+8hIb4RhzojzKw3UW1D9YSMaU+1jYdtIkiRJY2Xcw8gNbbnO4IkkywJrAI/S7O9BVT1As3fJM5KsNuR6a7dl/1qPkX1McxtJkiRprIx7GLmwLbcbcm5zmidWXV5V8yfZ5g0DdaDZj+RWYJ0ka0yyTW9vlG2TPOG/QZJn0uxZ8hDwvSHXkyRJksbCuIeRucCdwG5JNuodTPI04KPtl8cPtDmhLQ9Jskpfm9WBfYD5wJd6x9v9TnptPtYfLtrd318DXAdc0tfmZuA8oHfNfkcCKwJfbkdqJEmSpLE04xawJ9kR2LH98rlt+eokJ7X/vrOqPgBQVfcleRdNKLk4yanAXcCbaR6vOxc4rf/6VXV5uwv6gcC1SeYCywG7AqsC+w3svg5wHLA9zSaLVyS5gGbvkV1o9jLZa3A/EeC9wOXAp5NsA1wPbAJsRTM965ApfWMkSZKkGWbGhRHgFcAeA8fWbF8APwU+0DtRVWcm2YLml/u3AE8DfkwTNj49bCf3qjooybXAvsC7gceBa4BjquqcIfXnJ3ktcDCwO3AAcB9wJnB4VV03pM3N7WjNUTRTwt4I3A58Gjiyqu6azDdDkiRJmqlmXBipqiOAI6bY5js0v+xPpc3JwMlTqP8QcHj7mmybnwF7TuW+JEmSpHEx7mtGJEmSJC2lDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInll3cHSRZFvhjIMB/VdUji7tPSZIkSUu/RR4ZSbJGkr2SrDPk3BuBnwNXA1cBv0jylkXtU5IkSdLMNx3TtP4S+ALw2/6DSdYAvg48B/gZ8CNgVeCrSV46Df1KkiRJmsGmI4z8KfCfVTVv4Pj+wAo0QWWNqnopsCvwVGC/aehXkiRJ0gw2HWFkDeC/hhzfDngU+FBVFUBVzQW+C2wxDf1KkiRJmsGmI4w8G7i1/0CSZwLrAFdV1T0D9a8Bnj8N/UqSJEmawaYjjBQwZ+DYK2iennXNkPr3sgSe4iVJkiRp6TYdYWQesNnAsa1oQsoVQ+o/G/jVNPQrSZIkaQabjjByHrB+kkOTrJRkI+A9NOtFvjmk/kYMTOuSJEmSNPtMRxj5GHAPcCRwN81oyB8CX6qq/+6vmORFwCuBS6ahX0mSJEkz2CKHkaq6HdgcuAh4GLgN+DjNo30H7UGzZuTcRe1XkiRJ0sw2LQvJq+qHwGsnUe8o4Kjp6FOSJEnSzDYd07QkSZIkacoWexhJ8vIk709yQLu4vRNJ3pTkvCQ/T/JQkp8k+XqSV4+ov2mSbyS5K8mDSa5t38cyE/SxR5Irk9yf5N4kFyfZfoL6KyQ5MskNSR5OckeS05OsNx3vWZIkSVqaLXIYSbJ5ki8nedWQc0fQ7DXyceBY4Iokxy1qn1OV5B+Ac4ANaJ7w9an2vnYAvpPkLwbq7wBcSrMW5gzgc8BywCeAU0f0cSxwErAa8AXgFGB94Owk+w6pvzxwPnAYcF97T98CdgKuSrLJorxnSZIkaWk3HWtGdgH+F7Bf/8Ekr6H5Rfsx4GvAb9q670vyrar6xjT0vUBJngt8gGZvk5dV1R1957YCLqRZx3JKe2wlmjDxGLBlVV3VHv9wW3fnJLtV1al919kUOAi4Gdi4qu5ujx8DXA0cm+ScqprXd2sH0uzPMhfYtaoeb9ucBpwJnJhk/d5xSZIkadxMxzStVwNXVNW9A8f/N83Gh/tX1durah+akYZHgT2nod/JehHN+7yiP4gAVNVFNCHp2X2Hd26/PrUXRNq6DwOHtl++Z6CPvdvy6F4QadvMoxlVWZ6+95wkfW0+2B84quos4DLgJcAWU3mjkiRJ0kwyHWHkfwA3DTm+NfAAzSgDAFX1I+DfgY2nod/Jugn4LfAnSf6g/0SSzYFn0kyP6tm6LYdt2Hgp8CCwaTvNajJtzh2oA7AW8ELgxqq6ZZJtJEmSpLEyHWHkWTRToH6nnRr1XODyqnp0oP5NNJsiLhFVdRfwobbP65J8PsnfJTmdZvf482lGcXrWbcsbh1zrUeAWmultawIkWRF4HnB/u+fKoF5QW2cyfUzQRpIkSRor07Fm5CGeHC42aMvvD6k/n2aq1hJTVZ9MMg84EXhX36kfAycNTN+a05aD084YOL7yQtZf2DZDJbl6xKkXL6itJEmS1KXpGBn5EfCGJP3B5k0060UuH1L/BcCwEYTFJskHaRaKn0QzRWpFYEPgJ8BXknxsKpdry5ribUyl/sL2IUmSJM0Y0zEyMhf4GPB/k5xAM7XoL2n+un/+kPqbAddPQ7+TkmRL4B+AM6rqwL5T1yTZiWaq1EFJTqiqn/D7UYk5DLdSW947UI6qP2wUZKp9jFRVGw473o6YbDDsnCRJkrQ0mI6Rkc/QTMfajmZPjn+g2ZPjsPYJVL/T7p2xOk9cML649TYdvGjwRFU9CFxJ8314ZXv4hrZ80nqNdvRnDZppZj9pr/EAcBvwjCSrDel/7bbsXx8yso8J2kiSJEljZZHDSFXNp3lk72E0T5P6CvBnVfXZIdVfAZwFnL2o/U5B76lXzx5xvnf8t215YVtuN6Tu5sDTaRbmz+87PlGbNwzUgWY/kluBdZKsMck2kiRJ0liZjpERquqBqvpoVb2p3VPk30bU+6eq2qmqfjwd/U7SZW357iTP6z+R5A0008Ye5vfrW+YCdwK7Jdmor+7TgI+2Xx4/0McJbXlIklX62qwO7EOzaP9LveNVVX1tPpbkKX1tdgBeA1wHXDKVNypJkiTNJNOxZmTKkjy7qv57CXU3l2Za2GuB65OcAfwSWI9mCleAg6vq1wBVdV+Sd7XtLk5yKnAX8GaaR/LOBU7r76CqLk9yHM2u6tcmmUszVW1XYFVgv4Hd1wGOa/vfGbgiyQU0e4/sQrOXyV7uvi5JkqRxNi0jI5OVZE6Sv6WZprREtL/QvxE4gGa0YSfgIOBVwDeA11fVpwbanEmz+/mlwFuA/YBHaMLGbu3IxmA/BwHvoAk67wbeDvyQEVPW2mlerwWOonmE7wHA64AzgY2r6opFed+SJEnS0m7aRkaSvIjmcbmPAFdW1a/6zj2N5pftDwCr0Pzlf4mpqkeAT7avybb5Dk2ImUo/JwMnT6H+Q8Dh7UuSJEmaVaZlZCTJp2lGO75O85f9eUne257bkubpUR8FVgA+Rbt7uSRJkqTZa5FHRpLsAewLPE6zf0ho1lZ8OskDwD8By7TlR6vqF4vapyRJkqSZbzqmab2D5rG4W1XVdwGSbE6z4eEXgZ/TrJv4z2noS5IkSdKYmI5pWi+j2d38u70DVXUpzXSt0DwVyiAiSZIk6QmmI4zMAYbtG3JTW353yDlJkiRJs9x0hJGn0DxBa9Aj8LsnRkmSJEnSE0zXPiNP2ndDkiRJkiYyXfuMHJHkiGEnkjw25HBVVSe7v0uSJElaOkxXIMhiri9JkiRpzCxyGKmq6ZrqJUmSJGkWMUhIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkTsyqMJLkNUn+NcntSea35XlJ3jik7qZJvpHkriQPJrk2yfuTLDPB9fdIcmWS+5Pcm+TiJNtPUH+FJEcmuSHJw0nuSHJ6kvWm6z1LkiRJS6tZE0aSHApcCmwOfBP4OHA2sAqw5UDdHfrqngF8DlgO+ARw6ojrHwucBKwGfAE4BVgfODvJvkPqLw+cDxwG3Ad8CvgWsBNwVZJNFuHtSpIkSUu9Zbu+gSUhyS7AR2h+2f+fVfWbgfNP7fv3SjRh4jFgy6q6qj3+YeBCYOcku1XVqX1tNgUOAm4GNq6qu9vjxwBXA8cmOaeq5vV1eyCwGTAX2LWqHm/bnAacCZyYZP3ecUmSJGncjP3ISJKnAP8APAjsPhhEAKrqkb4vdwaeDZzaCyJtnYeBQ9sv3zNwib3b8uheEGnbzKMZVVke2LPvntLX5oP9gaOqzgIuA14CbDHpNypJkiTNMGMfRoBNgTWAbwB3J3lTkg8leV+SVw+pv3VbfnPIuUtpQs2m7TSrybQ5d6AOwFrAC4Ebq+qWSbaRJEmSxspsmKa1cVv+CriGZh3H7yS5FNi5qv67PbRuW944eKGqejTJLcBLgTWB65OsCDwPuL+qbh/S/01tuU7fsZF9TNBmqCRXjzj14gW1lSRJkro0G0ZGntOWewMrAK8Fngn8MfDvNIvUv95Xf05b3jvier3jKy9k/YVtI0mSJI2V2TAy0nsUb2hGQP5f+/UPk+xEMzqxRZJXV9V3J3G9tGVN8T6mUn/SfVTVhkMv0IyYbDCFPiVJkqQlajaMjPQWlP+kL4gAUFUP0YyOAPxJW/ZGJeYw3EoD9RZUf9goyFT7kCRJksbObAgjN7TlPSPO98LKCgP1n7ReI8myNIvhHwV+AlBVDwC3Ac9IstqQ66/dlv3rQ0b2MUEbSZIkaazMhjByKU14WDvJckPO/3FbzmvLC9tyuyF1NweeDlxeVfP7jk/U5g0DdaDZj+RWYJ0ka0yyjSRJkjRWxj6MVNWdwGk0U6IO6z+X5HXA62mmQ/UeyzsXuBPYLclGfXWfBny0/fL4gW5OaMtDkqzS12Z1YB9gPvClvnuqvjYfa/dC6bXZAXgNcB1wydTerSRJkjRzzIYF7NDsdr4JTVjYHLgSeBGwE81O6++qqnsAquq+JO+iCSUXJzkVuAt4M80jeefShJvfqarLkxzX9nNtkrnAcsCuwKrAfgO7rwMcB2xPs8niFUkuoNl7ZBeavUz2cvd1SZIkjbOxHxkBqKo7aMLIJ4AXAPvTbCj4b8BrqurrA/XPpNn9/FLgLcB+wCM0YWO3dmRjsI+DgHcAvwTeDbwd+CHwZ1X12SH159M8Zvgomkf4HgC8DjgT2LiqrlikNy1JkiQt5WbLyAhVdRdNmDhwkvW/A7xxin2cDJw8hfoPAYe3L0mSJGlWmRUjI5IkSZKWPoYRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUCcOIJEmSpE7MyjCS5G1Jqn29c0SdTZN8I8ldSR5Mcm2S9ydZZoLr7pHkyiT3J7k3ycVJtp+g/gpJjkxyQ5KHk9yR5PQk603H+5QkSZKWZrMujCR5AfAZ4P4J6uwAXApsDpwBfA5YDvgEcOqINscCJwGrAV8ATgHWB85Osu+Q+ssD5wOHAfcBnwK+BewEXJVkk4V6g5IkSdIMMavCSJIAXwJ+DZwwos5KNGHiMWDLqvrLqvor4BXAd4Gdk+w20GZT4CDgZuBlVXVAVe0DbAjcBRybZPWBrg4ENgPmAptU1YeqandgZ+DpwIlJZtV/H0mSJM0us+2X3f2BrYE9gQdG1NkZeDZwalVd1TtYVQ8Dh7Zfvmegzd5teXRV3d3XZh7NqMrybZ/A70JRr80Hq+rxvjZnAZcBLwG2mMJ7kyRJkmaUWRNG2nUYfw98qqounaDq1m35zSHnLgUeBDZtp1lNps25A3UA1gJeCNxYVbdMso0kSZI0Vpbt+gaWhCTLAv8C3Ar8zQKqr9uWNw6eqKpHk9wCvBRYE7g+yYrA84D7q+r2Ide7qS3XmUwfE7QZKsnVI069eEFtJUmSpC7NijBCs0j8lcCfVtVDC6g7py3vHXG+d3zlhay/sG0kSbPErUet3/UtSJohXnjYf3Z9C4tk7MNIkj+hGQ35eFV9dzou2ZY1xXZTqT/pPqpqw6EXaEZMNphCn5IkSdISNdZrRvqmZ90IfHiSzXqjEnNGnF9poN6C6g8bBZlqH5IkSdLYGeswAjyDZt3FesDDfRsdFnB4W+cL7bFPtl/f0JZPWq/Rhps1gEeBnwBU1QPAbcAzkqw25B7Wbsv+9SEj+5igjSRJkjRWxn2a1nzgiyPObUCzjuTbNOGgN4XrQuDPge2Arw202ZxmD5BLq2p+3/ELgbe1bb400OYNfXV6bqZZTL9OkjWGPFFrWBtJkiRprIz1yEhVPVRV7xz2Av5vW+3k9thp7ddzgTuB3ZJs1LtWkqcBH22/PH6gq94GiockWaWvzerAPjSh6Hchpaqqr83H+jc3bHd/fw1wHXDJwr53SZIkaWk37iMjU1ZV9yV5F00ouTjJqTS7qL+Z5pG8c4HTBtpcnuQ4ml3Vr00yF1gO2BVYFdiv3QCx33HA9jSbLF6R5AKavUd2odnLZK/+zRAlSZKkcTPWIyMLq6rOpNn9/FLgLcB+wCM0YWO3dmRjsM1BwDuAXwLvBt4O/BD4s6r67JD684HXAkfRPML3AOB1wJnAxlV1xfS+K0mSJGnpMmtHRqrqCOCICc5/B3jjFK95MnDyFOo/RLOQ/vAF1ZUkSZLGjSMjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0Y+zCS5FlJ3pnkjCQ/TvJQknuTfDvJXyYZ+j1IsmmSbyS5K8mDSa5N8v4ky0zQ1x5Jrkxyf9vHxUm2n6D+CkmOTHJDkoeT3JHk9CTrTcd7lyRJkpZmYx9GgF2ALwCbAFcAnwT+Ffhj4J+B05Okv0GSHYBLgc2BM4DPAcsBnwBOHdZJkmOBk4DV2v5OAdYHzk6y75D6ywPnA4cB9wGfAr4F7ARclWSThX/LkiRJ0tJv2a5vYAm4EXgz8G9V9XjvYJK/Aa4E3gL8T5qAQpKVaMLEY8CWVXVVe/zDwIXAzkl2q6pT+661KXAQcDOwcVXd3R4/BrgaODbJOVU1r+++DgQ2A+YCu/buLclpwJnAiUnW779nSZIkaZyM/chIVV1YVWcP/lJfVb8ETmi/3LLv1M7As4FTe0Gkrf8wcGj75XsGutm7LY/uBZG2zTyaUZXlgT17x9uRmF6bD/bfW1WdBVwGvATYYtJvVJIkSZphxj6MLMAjbflo37Gt2/KbQ+pfCjwIbNpOs5pMm3MH6gCsBbwQuLGqbplkG0mSJGmszIZpWkMlWRZ4e/tlf4hYty1vHGxTVY8muQV4KbAmcH2SFYHnAfdX1e1DurqpLdeZTB8TtBkqydUjTr14QW0lSZKkLs3mkZG/p1nE/o2q+ve+43Pa8t4R7XrHV17I+gvbRpIkSRors3JkJMn+NAvOfwS8barN27Km2G4q9SfdR1VtOPQCzYjJBlPoU5IkSVqiZt3ISJJ9aB6jex2wVVXdNVClNyoxh+FWGqi3oPrDRkGm2ockSZI0dmZVGEnyfuCzwH/RBJFfDql2Q1s+ab1Gu85kDZoF7z8BqKoHgNuAZyRZbcj11m7L/vUhI/uYoI0kSZI0VmZNGEnyIZpNC39AE0TuGFH1wrbcbsi5zYGnA5dX1fxJtnnDQB1o9iO5FVgnyRqTbCNJkiSNlVkRRtoNC/+eZgPCbarqzgmqzwXuBHZLslHfNZ4GfLT98viBNr39Sg5Jskpfm9WBfYD5wJd6x6uq+tp8LMlT+trsALyGZhrZJZN8i5IkSdKMM/YL2JPsARxFs6P6ZcD+zZ6DTzCvqk4CqKr7kryLJpRcnORU4C6aXdzXbY+f1t+4qi5PchzNrurXJpkLLAfsCqwK7Dew+zrAccD2NJssXpHkApq9R3ah2ctkL3dflyRJ0jgb+zBCs8YDYBng/SPqXAKc1Puiqs5MsgVwCPAW4GnAj2nCxqfbkY0nqKqDklwL7Au8G3gcuAY4pqrOGVJ/fpLXAgcDuwMHAPcBZwKHV9V1U32jkiRJ0kwy9mGkqo4AjliIdt8B3jjFNicDJ0+h/kPA4e1LkiRJmlVmxZoRSZIkSUsfw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjkiRJkjphGJEkSZLUCcOIJEmSpE4YRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJwwjHUvy/CQnJvlFkvlJ5iX5ZJJVur43SZIkaXFatusbmM2SrAVcDjwHOAv4EfAnwPuA7ZJsVlW/7vAWJUmSpMXGkZFu/SNNENm/qnasqoOramvgE8C6wNGd3p0kSZK0GBlGOpJkTWBbYB7wuYHThwMPAG9LsuISvjVJkiRpiTCMdGfrtjyvqh7vP1FVvwG+AzwdeNWSvjFJkiRpSXDNSHfWbcsbR5y/iWbkZB3gglEXSXL1iFMvv/7669lwww0X/g6nyfW3uexF0oJteOGnur6FpcZvb/9x17cgaYZY7qyl4He9668HWH1h2hpGujOnLe8dcb53fOWFvP5jDz300L3XXHPNvIVsLy1OL27LH3V6F1qqXPOrn3Z9C9LSzM9NDXf7NV3fATRB5L6FaWgYWXqlLWuiSlXVfRyWpqg3ouf/v5I0OX5ualy5ZqQ7vZGPOSPOrzRQT5IkSRorhpHu3NCW64w4v3ZbjlpTIkmSJM1ohpHuXNSW2yZ5wn+HJM8ENgMeAr63pG9MkiRJWhIMIx2pqpuB82gW/OwzcPpIYEXgy1X1wBK+NUmSJGmJcAF7t94LXA58Osk2wPXAJsBWNNOzDunw3iRJkqTFKlUTPqxJi1mSFwBHAdsBzwJuB84Ejqyquzq8NUmSJGmxMoxIkiRJ6oRrRiRJkiR1wjAiSZIkqROGEUmSJEmdMIxIkiRJ6oRhRJIkSVInDCOSFpskWyapJEcs5n5Wb/s5aXH2I0k9S+rzbXFLcnESH62qzhhGpDGSZJkk70pySZK7kjyS5I4k1yb55yRv7voel6QkJ7W/LKze9b1I6l77ebCg15Zd3+d08nNQSzt3YJfGRJJlgHNoNtC8B/g34OfAqsBawO7Ai4H/uwRv60pgPeDOxdzPbW0/9y7mfiSNhyMnODdvSd3EUuLtwNO7vgnNXoYRaXy8lSaI/D9gi6p6wi/mSZ4ObLIkb6iqHgR+tAT6eWRJ9CNpPFTVEV3fw9Kiqm7t+h40uzlNSxofm7blSYNBBJpgUFUXDR5P8tYkFyW5O8nDSa5PcmiS5YfUrXZ+8R8k+XyS25PMT/LDJHsOqT9yTnWStZN8OcltSX6b5Bft12sPqXtEb/pEkt2TXJHk/iTz2vNPWjPSzoHeo/3ylr4pGL0230vy2KipC0k+0NY/aNh5SbNDkj9M8sUkv0ryUJIfJNljgvrzep8zQ8797rNsyLkXJzmxbT+/nWJ7WZL3DNTbMckpSW5M8kD7WXh1kv2TPGWg7oSfg22doWtGkjwlyd5J/qPt44H23+8Z7KfX11R+Pkg9joxI4+PXbbnOZBsk+SKwF810rv9DM73rVcBHgG2SvK6qHh1otjLwHeC3wFzgacDOwIlJHq+qkyfR78bAt4Bn0kwbu45mCtmfAzsk2aaqrhrS9CDgdcDZwEXAnAm6ORLYEXg58Kn2vdFX/iNwMvAu4JAh7d8JzG/rSJqFkjwLuBxYE/h2+1oNOAE4bxr7eRPwdWB54JvA12g+a18OfBA4vq/63wOPA1fQTFGdA2xN8zm3MfC2vroL+hycyL/QTO/9GfDPQAE70Xx2/inN5/WglVnEnw+aharKly9fY/ACXknzA+Bxmh8i/xN40QT130Hzw+X/ACsMnDuiPfe+gePVvv4ZWKbv+EuAR4HrBupv2dY/ou9YgOvb438+UH/X9viPgKcMuZ8HgFcOeS+rt+dPGjh+Unt89SFtlqdZy3I78NQR9/2Vrv+7+vLla/pefZ9hR4x4HTxQ//Nt/U8MHN8IeGTw8609Nw+YN6L/3mfZln3H/oBmvdtvaabYDrZ5/sDXaw2p8xSaP5wUsMnAuZGfg+35i5tfB59w7K1tm2uAZ/QdXxG4qj23+4jv7aR+Pvjy1Xs5TUsaE1X1feAvgF+15b8C85L8OskZSf5soMn7aH5A7FVVDw2c+wjNSMuwv3w9CBxYVY/19X0dzV/D1kvyzAXc6qY0oyDfraqvDLyH02j+8rguzV/eBn2+fZ+LrKrmA18CngsMPmXsf7flP01HX5KWOoePeB3cq5DkqTSfgb+hCRG/U83I7RM+vxbBHsBKwPFVdcngyar6+cDXNw+p8zjNyAfA66fhnvZqy4Or6v6+fh4APtR++c4h7Rb154NmIadpSWOkqk5PcgawFc0v869syx2BHZN8mWZEZAWaYfs7gfcnGXa5+TRPqBp0U1XdN+T4z9pyZZof3qNs0JYXjjh/Yd+9Xzpw7soJrrswjqeZ+vW/acIbSf6AZirC9VU12L+kMVBVQz/0BryY5ilTl9WQdXg0Iwoj145Mwava8tzJVG6njv0V8Eaa6WMrDlR53jTc0wY0o+wXDzl3CfAYzWf0oEX9+aBZyDAijZlqnix1XvvqPfL3LcCJNI9wPAP4D5rpUs+m+WvgVNwz4nhvbckyC2jfW+dx+4jzveMrDzn3ywVce0qq6idJ/h14fZK12r84voNmCpejItLs1vus+tWI89P1ebRyW962oIpJVqb5/F6D5o8zXwbuovn8XZlmxPtJDx9ZCHOAu6rqt4MnqurRJHcCzxnS7p4R15vszwfNQk7TksZcVT1WVacDn2gPbc3v9+P4flVlotdiuKVe388dcX61gXr9FscuwcfTBLN3tV+/E3iY5oe8pNmr9xn0hyPOj/oMe5zRf+xdecixe9pyMiMa76QJIkdW1SZV9d6qOrSaRxWfNon2k3UvsGo7Ve0JkixLs85l2AiINGWGEWn26A2Np50D/EPgpUlWXcL30VvzseWI873j10xDX715yxP9Ne4c4FZgzyTb0qxXOb2q7p6G/iXNXD+iWQPxiiTDnty35Yh2dwN/OOwXeZqF74O+15ZvmMQ9/VFb/uuQc1uMaDOZz8FB36f5HXHzIec2b681HZ/RkmFEGhftfiGvG/H89+fy+7/899ZBHAcsR/PIxZWHtFklyQaDx6fBd4AbgD9NsvNAnzvT/KC7kWYh+6LqPe74haMqtAs/P08z5eDE9vAJ09C3pBmsnfL6FZpHkB/Rfy7JRgx/wAc006eWBZ6wt0aSdwCbDal/Ms0ow3uSPOmX/yTP7/tyXltuOVDnlcBfj7ifBX4ODtH7LPy7NBvm9vp5Os2jhQG+OIXrSSO5ZkQaH5vQzBf+ZZJvA7e0x9cA3kSzaP0smme/U1UnJtkQeC9wc7t24lZg1bbN5jRPm9p7Om+yqqrdMOx84LQkZ9H8BXJdmoX2vwHe3oaERXUBzULPLySZC9wP3FNVnx2o98/AYTTTJP6zqr47DX1LWkplyEasfc6sqh+0//4bYBuaB31sxO/3GdkV+AZPfhIfwGdogsjxSbahWbz9cponCZ4DbN9fuaruTLI7zWfzRUnOBa6lecLWy4AX0HwmQzN99K+ATybZCrgJWLu95v9p72vQZD8H++/pq0l2AP4X8MMkZ9JMk92xvZfTB5+GKC0sw4g0Pj5O84PptTQ/wF5Ps+HUr2meiPJV4KtV9bt1F1W1T/uDb++23co0iyFvBY4BTlkcN1pVV7QbHx7a9vtnNE/2+hrwkaq6YZr6+fd2B/V3AQfQjAT9FPjsQL1fJfkGzQ9aF65L42+iB3fMA34AvwsKmwF/S/M5tRHNyO572npPCiNVdV2S1/a1eRS4DHg1zf5P2w9p829t2PkQTfjZlma614+Av+ur94skr6EZnfhTms/5H9H8UelbDAkjk/0cHOKtNE/O2ovfP+78epqfNcePaiRNVfp+L5GkWamd2vZjmoWqq414NKUkSZpmrhmRJNiZZurBlw0ikiQtOY6MSJq1khxMs0bm3TTTVl9aVT/t9q4kSZo9DCOSZq0kBTwCXAf8VVWd3/EtSZI0qxhGJEmSJHXCNSOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkjSrJakkFw8cO6I9vmUnNyVJs4RhRJK02LW/2Pe/HktyZ5ILk/x51/e3OAwLOZKkJ1q26xuQJM0qR7blU4F1gR2BrZJsWFUHdnZXT/ZZ4FTg1q5vRJLGWaqq63uQJI25JAVQVRk4vg1wfvvlmlU1bwnfWu/eLqmqLWfCdSVpnDhNS5LUmaq6APgREGBjeOJ6jSS7J7kiyf1J5vXaJXl6kr9O8oMkD7Tnv5vkrcP6SbJckg8nuTnJ/CS3JPlokuVH1B+5ZiTJi5OcmGRee607klyW5D3t+Xf0whewxcD0tCMGrvW/klya5N4kDyX5z/Z9Pem+2v7mJVkpyXHtvx8ZvKYkzSRO05Ikda03WjI4VH8Q8DrgbOAiYA5AkpWBC4FXAtcAJ9L8ce31wFeTvLSqDv3dxZMApwM7ADfTTMFaDtgLWH9KN5q8Cfg6sDzwTeBrwMrAy4EPAscDP6CZjnY48FPgpL5LXNx3rb8F/hq4E/gqcD/wBuBvgdcneV1VPTJwC8u1731V4DzgPuCWqbwHSVqaGEYkSZ1J8lqatSMF/MfA6a2BV1fV9weOf5ImiHyoqj7Wd62nAWcCf5NkblX9oD31Vpog8j1gq6p6uK1/+JA+J7rXP6AJDcsCW1fVJQPnnw/Q9vuD9vrzquqIIdd6NU0Q+RnwJ1X1y/b4XwNnANsDf0UTTPqtBlwHbFFVD0z23iVpaeU0LUnSEtNOfzoiydFJ5tKMLgT4ZFX9dKD65weDSJJnAX8BXNUfRADakPGh9nq7953asy3/phdE2vp3AR+Zwu3vAawEHD8YRNrr/XwK19qrLT/aCyLtNR6lGRF6HHjniLYHGUQkjQtHRiRJS9LhbVnAPcBlwBer6pQhda8ccmxjYBngSesvWk9ty/X6jm1A88v9t4fUv3iBd/x7r2rLc6fQZpQN2vLCwRNVdWOSnwNrJFm5qu7pO/0wcO009C9JSwXDiCRpiRl8mtYC/HLIsWe15cbta5Rn9P17DnDXkPUXo/oYZeW2vG0KbUaZ05a3jzh/O/DCtt49fcfvKB+DKWmMOE1LkrS0GvZL971t+YmqygSvrQbarJrkqUOu99wp3M89bfm8KbQZpfc+RvW/2kC9HoOIpLFiGJEkzSRX0ky5es0U2lxD8/PuT4ec23IK1/leW75hkvUfp5lSNkxvLcyT+k/yR8DzgVsGpmhJ0tgxjEiSZoyqugP4CrBRu2/Ik6YbJ1kryRp9h77Ulke3T9zq1VsVOJTJO5nmUbrvSbL5kH6fP3Do18ALRlzrxLY8NMmz+66xDHAszc/nL07h3iRpRnLNiCRpptkXWBs4Cnhbkm8DvwL+B83C9Y1pHufb23/ja8CuwJuB/0pyFs1C951pHu271mQ6rao7k+wOzAUuSnIuzWLylYCX0QSP/hB0AbBbkrOBq4FHgUur6tKqujzJx2j2Jvmv9sliD9CMuvwxzWL7Y6b6jZGkmcYwIkmaUarqviRbAO+meYTvW4Cn0QSSm4ADgPP76leSXYCDgXfQhJnbaUZMjqJ5QtVk+/63JBvRPEJ4G2Bb4G6aXeT/bqD6+2jWeGwDvJFmtONI4NL2Wh9K8v32ft5OE5Buphmt+XhV/Xay9yVJM1V8KIckSZKkLrhmRJIkSVInDCOSJEmSOmEYkSRJktQJw4gkSZKkThhGJEmSJHXCMCJJkiSpE4YRSZIkSZ0wjEiSJEnqhGFEkiRJUicMI5IkSZI6YRiRJEmS1AnDiCRJkqROGEYkSZIkdcIwIkmSJKkThhFJkiRJnTCMSJIkSeqEYUSSJElSJ/4/m9IuI3k083gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 262, "width": 401 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "rss_seniority = rss(mod_seniority.predict(), df_income['Income'])\n", "rss_education = rss(mod_edu.predict(), df_income['Income'])\n", "df_rss = pd.DataFrame({'RSS': [rss_seniority, rss_education],\n", " 'Predictor': ['Seniority', 'Education']})\n", "sns.barplot(data = df_rss, x = \"Predictor\", y = \"RSS\")" ] }, { "cell_type": "markdown", "id": "bb1134d5", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Calculating $MSE$\n", "\n", "> The **mean squared error** is the $RSS$ divided by the number of data points.\n", "\n", "$MSE = \\frac{1}{N}*\\sum_i^N (\\hat{y}_i - y_i)^2$\n", "\n", "**Note**: A higher value is worse (i.e., more error)." ] }, { "cell_type": "code", "execution_count": 25, "id": "edcd78d8", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "### define a helper function!\n", "def mse(y_pred, y):\n", " return (sum((y_pred - y)**2)) / (len(y))" ] }, { "cell_type": "code", "execution_count": 26, "id": "8af37d6b", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "132.75021951574226" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## RSS for \"Education\" model\n", "mse(mod_edu.predict(), df_income['Income'])" ] }, { "cell_type": "markdown", "id": "32cc191d", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Check-in\n", "\n", "Calculate the $MSE$ for your `Seniority` model. Is it better or worse? Does this match your intuition from the visual comparisons?" ] }, { "cell_type": "code", "execution_count": 27, "id": "8f22dbcf", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "### Your code here" ] }, { "cell_type": "markdown", "id": "cb229b15", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Solution" ] }, { "cell_type": "code", "execution_count": 28, "id": "c2ee049f", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "515.9089887294346" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## RSS for \"Seniority\" model\n", "mse(mod_seniority.predict(), df_income['Income'])" ] }, { "cell_type": "markdown", "id": "edf9b909", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Calculating $S_{Y|X}$\n", "\n", "> The **standard error of the estimate** is a measure of the *expected prediction error*, i.e., how much your predictions are \"wrong\" on average. \n", "\n", "$\\Large S_{Y|X} = \\sqrt{\\frac{RSS}{n-2}}$\n", "\n", "- How much, on average, do we expect $\\hat{Y}$ to deviate from $Y$? \n", "- As before, **a smaller number means better fit**." ] }, { "cell_type": "code", "execution_count": 29, "id": "e4c8fcb6", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "11.926121668530007" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### Calculating directly\n", "np.sqrt(rss(mod_edu.predict(), df_income['Income']) / (len(df_income) - 2))" ] }, { "cell_type": "markdown", "id": "54bce3d0", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Calculating using `statsmodels`\n", "\n", "A **fit model** in `statsmodels` also gives us a `scale` parameter; the *square root* of this parameter is $S_{Y|X}$." ] }, { "cell_type": "code", "execution_count": 30, "id": "ddf9646b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "142.23237805258097" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mod_edu.scale ## model variance" ] }, { "cell_type": "code", "execution_count": 31, "id": "1399b716", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "11.926121668530007" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sqrt(mod_edu.scale) ## standard error of the estimate" ] }, { "cell_type": "markdown", "id": "4cfe8495", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Reporting $S_{Y|X}$\n", "\n", "We can report the **standard error of the estimate** by attaching it to our predictions, such as:\n", "\n", "> For an individual with $10$ years of education, we predict a salary of $21.96, \\pm 11.93$. " ] }, { "cell_type": "markdown", "id": "b27fd6bc", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Check-in\n", "\n", "What is the standard error of the estimate for the `Seniority` model? Is it higher or lower than the one for the `Education` model? What does this mean with respect to our prediction accuracy?" ] }, { "cell_type": "code", "execution_count": 32, "id": "b28b255c", "metadata": {}, "outputs": [], "source": [ "### Your code here" ] }, { "cell_type": "markdown", "id": "b2fdcfb0", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Solution" ] }, { "cell_type": "code", "execution_count": 33, "id": "e6e4f259", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "23.510840707672212" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sqrt(mod_seniority.scale)" ] }, { "cell_type": "markdown", "id": "f871f308", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### $R^2$: how much variance is explained?\n", "\n", "> The $R^2$, or **coefficient of determination**, measures the *proportion of variance* in $Y$ explained by the model.\n", "\n", "$\\Large R^2 = 1 - \\frac{RSS}{SS_{Y}}$\n", "\n", "**Check-in**: Why is this a sensible formula for calculating the proportion of variance in $Y$ explained by the model?" ] }, { "cell_type": "markdown", "id": "d4d65c85", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Decomposing $R^2$ (pt. 1)\n", "\n", "First, consider the terms in the fraction:\n", "\n", "- $RSS$: *Leftover* variance in $Y$ after fitting the model. \n", "- $SS_Y$: *Total* variance in $Y$ (i.e., *before* fitting the model).\n", "\n", "Thus, $\\frac{RSS}{SS_{Y}} = 1$ would mean the model hasn't explained anything, while $\\frac{RSS}{SS_{Y}} = 0$ would mean there's $0$ leftover variance after fitting the model. \n" ] }, { "cell_type": "markdown", "id": "3fb1f3d2", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Decomposing $R^2$ (pt. 2)\n", "\n", "So $\\frac{RSS}{SS_{Y}}$ gives us the ratio of *leftover variance* to *Total variance*.\n", "\n", "This means that subtracting $1 - \\frac{RSS}{SS_{Y}}$ gives us the proportion of **variance explained** by the model (i.e., the *inverse* of the leftover variance).\n", "\n", "- $R^2 = 0$ means the model hasn't explained anything.\n", "- $R^2 = 1$ means there's $0$ leftover variance." ] }, { "cell_type": "markdown", "id": "59cb8033", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Extracting $R^2$\n", "\n", "We can extract $R^2$ directly from the fit model." ] }, { "cell_type": "code", "execution_count": 34, "id": "9d149649", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "0.8118068966722579" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### What does this R^2 value mean?\n", "mod_edu.rsquared" ] }, { "cell_type": "markdown", "id": "94efb4de", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Check-in\n", "\n", "Extract the $R^2$ for your `Seniority` model. What is it? How does it compare to the $R^2$ for the `Education` model?" ] }, { "cell_type": "code", "execution_count": 35, "id": "8d467652", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "### Your code here" ] }, { "cell_type": "markdown", "id": "ffa5ac81", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Solution" ] }, { "cell_type": "code", "execution_count": 36, "id": "ff36c3b4", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "0.2686225757076368" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### What does this R^2 value mean?\n", "mod_seniority.rsquared" ] }, { "cell_type": "markdown", "id": "4d268069", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Comparing three models\n", "\n", "Now, let's compare $3$ different models:\n", "\n", "1. An `Intercept`-only model, i.e., with *no predictors*. \n", "2. The model with `Seniority`. \n", "3. The model with `Education`." ] }, { "cell_type": "code", "execution_count": 41, "id": "d52d9dee", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwMAAAILCAYAAAC0BkD6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAAA1ZUlEQVR4nO3de7xcVX3//9ebixcQEkDRFqwRyq1qrYACgnJTpNhWbbX9aotCf7VV8AFFbeutkqj0rmBQbK0iUu1FbYFa0cYieAGRGqTWGi6NHERBKSAIMYDA5/fH3iPDMJNzySTnTPbr+XjMY+Xstfbaa5KzM/OevfaaVBWSJEmSumez+R6AJEmSpPlhGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeqoLeZ7AJuqJNcC2wJT8zwUSZIkbdqWAD+sqifOdkfDwIaz7SMf+cjt99prr+3neyCSJEnadK1atYq1a9fOaV/DwIYztddee22/cuXK+R6HJEmSNmH77LMPl19++dRc9vWeAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSR20x3wPQ7O3zB2fP9xCksVj5ly+f7yFIktRpE3llIMnOSc5MckOSu5NMJTktyXaz7Of5SVYk+U6StUm+leTjSQ7YUGOXJEmSFoqJCwNJdgVWAscClwGnAt8CTgS+nGSHGfbz58C/AXsDnwHeDVwOvAC4OMlvjX/0kiRJ0sIxidOEzgB2BE6oqtN7G5O8CzgJOAV41bo6SPI44PXA94Gfr6qb+uoOBT4HvA34yNhHL0mSJC0QE3VlIMkuwBHAFPDegeqTgTXA0Um2nqarJ9A896/0BwGAqroQuAN4zDjGLEmSJC1Uk3Zl4LC2XFFV9/dXVNUdSS6mCQv7Axeso59rgHuAZyR5dFXd3KtI8mxgG+DcmQwoycoRVXvOZH9JkiRpvkzUlQFgj7a8ekT9NW25+7o6qapbgT8CHgt8M8n7k/xpko8BK4DPAr83hvFKkiRJC9akXRlY1Ja3j6jvbV88XUdVdVqSKeBM4JV9Vf8LnDU4fWgd/ewzbHt7xWDvmfQhSZIkzYdJuzIwnbRlTdsw+UPgE8BZwK7A1sA+NCsTfTTJX2ygMUqSJEkLwqSFgd4n/4tG1G870G6oJIcAfw78a1W9tqq+VVU/qqrLgRcB3wVe196wLEmSJG2SJi0MXNWWo+4J2K0tR91T0PNLbXnhYEVV/Yjm+ws2A5422wFKkiRJk2LSwkDvzfsRSR409iTbAAcCa4FLp+nn4W05avnQ3vZ75jJISZIkaRJMVBioqtU0q/0sAY4fqF5GM+//7KpaA5BkyyR7tt9a3O+Lbfm7SXbqr0jyizSh4i7gkvE+A0mSJGnhmLTVhACOo3mTvjzJ4cAqYD/gUJrpQW/ua7tTW38dTYDo+QTwH8BzgFVJzgG+B+xFM4UowBuq6pYN+kwkSZKkeTRxYaCqVifZF3gbcCRwFHAjsBxY1n6HwHR93J/kKJqrC/+P5qbhrYBbgfOB5VW1YgM9BUmSJGlBmLgwAFBV1wPHzqDdFA8sNzpY92PgtPYhSZIkdc5E3TMgSZIkaXwMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR01kWEgyc5JzkxyQ5K7k0wlOS3JdjPc/5gkNc3jvg39PCRJkqT5tMV8D2C2kuwKXALsCJwHXAk8AzgRODLJgVV1yzTdXAEsG1H3LOAw4NNjGbAkSZK0QE1cGADOoAkCJ1TV6b2NSd4FnAScArxqXR1U1RU0geAhkny5/eP7xzBWSZIkacGaqGlCSXYBjgCmgPcOVJ8MrAGOTrL1HPt/MrA/8F3gU3MfqSRJkrTwTdqVgcPackVV3d9fUVV3JLmYJizsD1wwh/5/ry0/WFUzumcgycoRVXvO4fiSJEnSRjNRVwaAPdry6hH117Tl7rPtOMkjgd8C7gc+MPuhSZIkSZNl0q4MLGrL20fU97YvnkPfv97u96mqun6mO1XVPsO2t1cM9p7DOCRJkqSNYtKuDEwnbVlz2Pd32/JvxjQWSZIkaUGbtDDQ++R/0Yj6bQfazUiSnwOeCXwHOH9uQ5MkSZImy6SFgavactQ9Abu15ah7CkaZ9Y3DkiRJ0qSbtDBwYVsekeRBY0+yDXAgsBa4dKYdJnkEcDTNjcMfHNM4JUmSpAVvosJAVa0GVgBLgOMHqpcBWwNnV9UagCRbJtmz/dbiUV4CbAecP5sbhyVJkqRJN2mrCQEcB1wCLE9yOLAK2A84lGZ60Jv72u7U1l9HEyCG6d047DcOS5IkqVMm6soA/OTqwL7AWTQh4HXArsBy4ICqumWmfSXZCzgIbxyWJElSB03ilQHa6TzHzqDdFA8sNzqsftW66iVJkqRN2cRdGZAkSZI0HoYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjprIMJBk5yRnJrkhyd1JppKclmS7OfT1rCT/nOTGtq8bk6xIctSGGLskSZK0UGwx3wOYrSS7ApcAOwLnAVcCzwBOBI5McmBV3TLDvt4CvB24Gfg34Ebg0cDTgEOA88c9fkmSJGmhmLgwAJxBEwROqKrTexuTvAs4CTgFeNV0nSR5CU0Q+A/gV6vqjoH6Lcc5aEmSJGmhmahpQkl2AY4ApoD3DlSfDKwBjk6y9TT9bAb8OfAj4GWDQQCgqn48jjFLkiRJC9WkXRk4rC1XVNX9/RVVdUeSi2nCwv7ABevo55nAE4FPAD9I8nzgycBdwGVV9eWZDijJyhFVe860D0mSJGk+TFoY2KMtrx5Rfw1NGNiddYeBp7fl94HLgaf0Vyb5AvDiqvq/uQ9VkiRJWtgmLQwsasvbR9T3ti+epp8d2/JVwLXAc4CvAE8A3gk8D/g4zU3E61RV+wzb3l4x2Hu6/SVJkqT5MlH3DMxA2rKmabd5X/sXV9UFVXVnVf0P8CLgO8DBSQ7YQOOUJEmS5t2khYHeJ/+LRtRvO9BulB+05beq6r/6K6pqLfDv7Y/PmPUIJUmSpAkxaWHgqrbcfUT9bm056p6CwX5uG1HfCwuPnNmwJEmSpMkzaWHgwrY8ol0e9CeSbAMcCKwFLp2mny8A9wK7JXnYkPont+XU3IcqSZIkLWwTFQaqajWwAlgCHD9QvQzYGji7qtZA88VhSfZsv7W4v5+bgX+imW701v66JM+luYH4duAzG+BpSJIkSQvCpK0mBHAccAmwPMnhwCpgP+BQmulBb+5ru1Nbfx1NgOj32na/Nyd5NnAZzWpCLwLuA15ZVbdtsGchSZIkzbOJujIAP7k6sC9wFs2b+dcBuwLLgQOq6pYZ9nNTu/+pwOOBE2i+1OxTwLOq6uNjH7wkSZK0gEzilQGq6nrg2Bm0m+KB5UaH1d9Kc4XgtWMbnCRJkjQhJu7KgCRJkqTxMAxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR11ESGgSQ7JzkzyQ1J7k4yleS0JNvNoo+pJDXi8b0NOX5JkiRpIdhivgcwW0l2BS4BdgTOA64EngGcCByZ5MCqumWG3d0OnDZk+51jGKokSZK0oE1cGADOoAkCJ1TV6b2NSd4FnAScArxqhn3dVlVLxz5CSZIkaQJM1DShJLsARwBTwHsHqk8G1gBHJ9l6Iw9NkiRJmjiTdmXgsLZcUVX391dU1R1JLqYJC/sDF8ygv4cn+S3gZ2iCxNeBL1TVfWMcsyRJkrQgTVoY2KMtrx5Rfw1NGNidmYWBxwF/N7Dt2iTHVtXnZzKgJCtHVO05k/0lSZKk+TJR04SARW15+4j63vbFM+jrQ8DhNIFga+ApwN8AS4BPJ3nqnEcpSZIkTYBJuzIwnbRlTdewqpYNbPoG8KokdwKvA5YCL5pBP/sMHUhzxWDv6faXJEmS5sukXRnoffK/aET9tgPt5uKv2/LZ69GHJEmStOBNWhi4qi13H1G/W1uOuqdgJm5qS1ckkiRJ0iZt0sLAhW15RJIHjT3JNsCBwFrg0vU4xgFt+a316EOSJEla8CYqDFTVamAFzU2+xw9UL6P5NP/sqloDkGTLJHu231r8E0melGT7wf6TPAF4T/vjR8Y8fEmSJGlBmcQbiI8DLgGWJzkcWAXsBxxKMz3ozX1td2rrr6MJED0vAd6Q5ELgWuAOYFfg+cAjgPOBv9qgz0KSJEmaZxMXBqpqdZJ9gbcBRwJHATcCy4FlVXXrDLq5kOY7C55GMy1oa+A24Es03zvwd1U17YpEkiRJ0iSbuDAAUFXXA8fOoN0UDyw32r/988CMvlRMkiRJ2lRN1D0DkiRJksbHMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRW4yroyRPAw4B7gVWVNVVI9q9AHhBVf32uI4tSZIkafbGcmUgyV8BXwX+CjgN+J8ky5NsOaT5LwCvGMdxJUmSJM3deoeBJC8CXgvcAXwAeB/wf8DxwIokW63vMSRJkiSN3ziuDLwauAvYr6p+r6peA+wO/DNwMPBvSR4xhuNIkiRJGqNxhIG9gX/pv0egqu6oql+nmTJ0CPDJJA8fw7EkSZIkjck4wsCjgOuGVVTVa4F3AocD5yZ52BiOJ0mSJGkMxrGa0I3A40ZVVtUfJNkCOJFm6tDXx3BMSZIkSetpHGFgFc29ASNV1UntVYFXA4eO4ZiSJEmS1tM4pgl9GtglybPW1aiqjgc+CLi6kCRJkrQAjOPKwD8DPw3sMF3Dqnplku8AS8ZwXEmSJEnrYb3DQFXdALxxFu2Xre8xJUmSJK2/sXwD8Wwlecx8HFeSJEnSAzZqGEiyKMmfAKs35nElSZIkPdQ47hkAIMkTgH2AHwOXVdX3++oeAZwEvB7YDvjRuI4rSZIkaW7GcmUgyXKaT/s/DpwLTCU5rq07BLgKeAfwSODdwC7jOK4kSZKkuVvvKwNJXgG8Brif5jsHAuwBLE+yBvgbYPO2fEd7w7EkSZKkeTaOKwPHAPcAz6qqJ1fVk4DDgPtovlfge8DeVXXcuIJAkp2TnJnkhiR3J5lKclqS7dajz6OTVPv4nXGMU5IkSVrIxhEGfh44p6q+3NtQVV+gmS4U4Ler6r/HcBwAkuwKrASOBS4DTgW+BZwIfDnJtN93MKTPxwOnA3eOa5ySJEnSQjeOMLAI+N8h269pyy8PqVsfZwA7AidU1Qur6g1VdRhNKNgDOGU2nSUJ8CHgFuCvxzxWSZIkacEaRxjYjGYFoUE/BqiqtWM4BgBJdgGOAKaA9w5UnwysAY5OsvUsuj2BZlrTse3+kiRJUieM63sGakz9TOewtlxRVfc/aABVdwAXA1sB+8+ksyR7AX8GvLud2iRJkiR1xri+Z2BpkqXDKpLcN2RzVdVcjr1HW149ov4amisHuwMXrKujJFsAfwd8G3jTHMbS62fliKo959qnJEmStDGMKwxkA7fvWdSWt4+o721fPIO+3go8DThonFOZJEmSpEmx3mGgqsY11WgceiFjndOWkjyD5mrAO/tXQZqLqtpnxDFWAnuvT9+SJEnShrSQ3sjPRO+T/0Uj6rcdaPcQfdODrgb+eHxDkyRJkibLpIWBq9py9xH1u7XlqHsKAB7V7r8XcFffF40VzYpEAH/bbjttfQcsSZIkLVTjumdgY7mwLY9Isln/ikJJtgEOBNYCl66jj7tpvhl5mL1p7iP4Ek3wGPd3JEiSJEkLxkSFgapanWQFzYpBx9N8a3DPMmBr4G+qag1Aki2BXYEfV9Xqto+1wO8M679dEelpwIer6gMb6nlIkiRJC8FEhYHWccAlwPIkhwOrgP2AQ2mmB725r+1Obf11wJKNO0xJkiRpYZu0ewZoP+HfFziLJgS8jubT/+XAAVV1y/yNTpIkSZock3hlgKq6Hjh2Bu2mmMV3GlTVUmDpXMclSZIkTZKJuzIgSZIkaTwMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR1lGJAkSZI6yjAgSZIkdZRhQJIkSeoow4AkSZLUUYYBSZIkqaMMA5IkSVJHGQYkSZKkjjIMSJIkSR01kWEgyc5JzkxyQ5K7k0wlOS3JdrPo48+TXJDk+iRrk9ya5GtJTk6yw4YcvyRJkrQQTFwYSLIrsBI4FrgMOBX4FnAi8OVZvJE/Cdga+CzwbuCjwL3AUuDrSR4/3pFLkiRJC8sW8z2AOTgD2BE4oapO721M8i6aN/inAK+aQT/bVtVdgxuTnAK8CXgjcNxYRixJkiQtQBN1ZSDJLsARwBTw3oHqk4E1wNFJtp6ur2FBoPWxttxtjsOUJEmSJsJEhQHgsLZcUVX391dU1R3AxcBWwP7rcYxfbsuvr0cfkiRJ0oI3adOE9mjLq0fUX0Nz5WB34IKZdJjk9cCjgEXAvsBBNEHgz2a4/8oRVXvOZH9JkiRpvkxaGFjUlrePqO9tXzyLPl8PPLbv588Ax1TV/81uaJIkSdJkmbQwMJ20Zc10h6p6HECSxwLPpLki8LUkv1RVl89g/32GDqS5YrD3TMchSZIkbWyTds9A75P/RSPqtx1oN2NV9f2qOodmmtEOwNmzH54kSZI0OSYtDFzVlruPqO+tADTqnoJpVdV1wDeBJyV59Fz7kSRJkha6SQsDF7blEUkeNPYk2wAHAmuBS9fzOD/dlvetZz+SJEnSgjVRYaCqVgMrgCXA8QPVy2i+UfjsqloDkGTLJHu231r8E+22xw32n2Sz9kvHdgQuqaofbICnIUmSJC0Ik3gD8XHAJcDyJIcDq4D9gENppge9ua/tTm39dTQBoudI4C+TfAFYDdxCs6LQwcAuwPeAV27QZyFJkiTNs4kLA1W1Osm+wNto3tQfBdwILAeWVdWtM+jmP4D300wreirNUqRraMLE3wHLZ9iPJEmSNLEmLgwAVNX1wLEzaDfFA8uN9m//Bg+dZiRJkiR1ykTdMyBJkiRpfAwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6qiJ/J4BSZov337bU+Z7CNJ6+5m3/vd8D0HSAuGVAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdNZFhIMnOSc5MckOSu5NMJTktyXYz3H+HJL+T5Jwk/5tkbZLbk3wpyf+XZCL/XiRJkqTZ2GK+BzBbSXYFLgF2BM4DrgSeAZwIHJnkwKq6ZZpuXgK8D7gRuBD4NvBY4FeBDwC/mOQlVVUb5llIkiRJ82/iwgBwBk0QOKGqTu9tTPIu4CTgFOBV0/RxNfArwKeq6v6+Pt4EXAb8Gk0w+OfxDl2SJElaOCZqOkySXYAjgCngvQPVJwNrgKOTbL2ufqrqc1X1yf4g0G7/HvDX7Y+HjGPMkiRJ0kI1UWEAOKwtVwx5I38HcDGwFbD/ehzjx21573r0IUmSJC14kzZNaI+2vHpE/TU0Vw52By6YbedJtgBe3v74mRnus3JE1Z6zPb4kSZK0MU3alYFFbXn7iPre9sVz7P/PgCcD51fVv8+xD0mSJGkiTNqVgemkLWe9ClCSE4DX0axOdPRM96uqfUb0txLYe7bjkCRJkjaWSbsy0Pvkf9GI+m0H2s1IkuOBdwPfBA6tqlvnNjxJkiRpckxaGLiqLXcfUb9bW466p+Ahkvw+8B7gGzRB4HtzHp0kSZI0QSYtDFzYlkcMfktwkm2AA4G1wKUz6SzJHwGnAlfQBIGbxjdUSZIkaWGbqDBQVauBFcAS4PiB6mXA1sDZVbUGIMmWSfZsv7X4QZL8Mc0NwyuBw6vq5g05dkmSJGmhmcQbiI8DLgGWJzkcWAXsBxxKMz3ozX1td2rrr6MJEAAkeQXwNuA+4IvACUkYMFVVZ22QZyBJkiQtABMXBqpqdZJ9ad7MHwkcBdwILAeWzfDm3ye25ebA749o83ngrPUarCRJkrSATVwYAKiq64FjZ9BuigeWG+3fvhRYOu5xSZIkSZNkou4ZkCRJkjQ+hgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUYkCRJkjrKMCBJkiR1lGFAkiRJ6ijDgCRJktRRhgFJkiSpowwDkiRJUkcZBiRJkqSOmsgwkGTnJGcmuSHJ3UmmkpyWZLtZ9PHiJKcn+WKSHyapJB/ZkOOWJEmSFpIt5nsAs5VkV+ASYEfgPOBK4BnAicCRSQ6sqltm0NVbgKcCdwLfAfbcMCOWJEmSFqZJvDJwBk0QOKGqXlhVb6iqw4BTgT2AU2bYz0nA7sC2wKs3yEglSZKkBWyiwkCSXYAjgCngvQPVJwNrgKOTbD1dX1V1YVVdU1U19oFKkiRJE2CiwgBwWFuuqKr7+yuq6g7gYmArYP+NPTBJkiRp0kzaPQN7tOXVI+qvoblysDtwwcYYUJKVI6q8B0GSJEkL2qRdGVjUlrePqO9tX7zhhyJJkiRNtkm7MjCdtOVGuw+gqvYZOpDmisHeG2sckiRJ0mxN2pWB3if/i0bUbzvQTpIkSdIIkxYGrmrL3UfU79aWo+4pkCRJktSatDBwYVsekeRBY0+yDXAgsBa4dGMPTJIkSZo0ExUGqmo1sAJYAhw/UL0M2Bo4u6rWACTZMsme7bcWS5IkSeoziTcQHwdcAixPcjiwCtgPOJRmetCb+9ru1NZfRxMgfiLJC4EXtj8+ri0PSHJW++ebq+r1Yx+9JEmStEBMXBioqtVJ9gXeBhwJHAXcCCwHllXVrTPs6heAVwxs26V9QBMgDAOSJEnaZE1cGACoquuBY2fQbooHlhsdrFsKLB3nuCRJkqRJMlH3DEiSJEkaH8OAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSR01kGEiyc5Izk9yQ5O4kU0lOS7LdfPQjSZIkTaIt5nsAs5VkV+ASYEfgPOBK4BnAicCRSQ6sqls2Vj+SJEnSpJrEKwNn0LyBP6GqXlhVb6iqw4BTgT2AUzZyP5IkSdJEmqgwkGQX4AhgCnjvQPXJwBrg6CRbb4x+JEmSpEk2UWEAOKwtV1TV/f0VVXUHcDGwFbD/RupHkiRJmliTds/AHm159Yj6a2g+8d8duGAj9EOSlSOqnrpq1Sr22Wefde0+J6u+660M2jTs87l3z/cQZu2eG/93vocgrbeHnTf+1yZJ82fVqlUAS+ay76SFgUVtefuI+t72xRupn3W5b+3atbdffvnlU+vRh+bPnm155byOYhN3+fevm+8haOHx3NsYbrx8vkeghcdzb7ItAX44lx0nLQxMJ21ZG6ufqvLjlU1Q74qP/77SxuW5J80Pz73umrR7Bnqf2C8aUb/tQLsN3Y8kSZI0sSYtDFzVlruPqN+tLUfdCzDufiRJkqSJNWlh4MK2PCLJg8aeZBvgQGAtcOlG6keSJEmaWBMVBqpqNbCC5iaJ4weqlwFbA2dX1RqAJFsm2bP9tuE59yNJkiRtilK1vvfablztG/tLaL49+DxgFbAfcCjNtJ5nVtUtbdslwLXAdVW1ZK79qHu8kUqaH5570vzw3OuuiQsDAEkeD7wNOBLYAbgROBdYVlW39rVbwogwMJt+JEmSpE3RRIYBSZIkSetvou4ZkCRJkjQ+hgFJkiSpowwDkiRJUkcZBiRJkqSOMgxIkiRJHWUY0ERIckiSSrJ0vseyPpJclMQlvNRZG+tcTrKkPc5Zs9zPc1RSpxgGtMG0L8TTPQ6Z73GOU5Kz2ue1ZL7HIgEk2TzJK5N8PsmtSX6c5KYkX0/ygSS/Mt9j3Jg8R7Wx9V7vxtDPMW1fx4xhWBNnrgFf09tivgegTli2jrqpjTWIBeLlwFbzPQh1Q5LNgX+j+WLF24BPAd8Btgd2BV4G7An860Yc1mXAXsDNG/g4322Pc/ss9/McldQphgFtcFW1dL7HsFBU1bfnewzqlJfSBIH/Ag6uqge9MU6yFbDfxhxQVf0IuHIjHOfHczmO56ikrnGakBaUJI9N8sEk30+yNskVSV6xjvZTSaZG1C0dNRUpyZ5Jzmz3v7udNvHFJK8eaPfCJB9JcnWSNUnuTLIyyQlJNhtoW0BvrNf2TYWa6mszdD5yks2SvCrJf7bHWNP++dWDx+kdq+3r0Unen+TG9nn8T5JjR/19qXOe2ZZnDQYBaN6YV9WFg9uTvDTJhUl+kOSuJKuSvCXJw4e0ndXv4rruGUiyW5Kzk3w3yT1Jbmh/3m1I25+c30leluQr7bkz1dY/ZErBXM7RJEe2bc4cHENb//AkN7ePh/z9SMP0/362f/7H9nforiRfTfJLA+0vAj7U/vihPHi67ZK+dlskOS7JpUl+mORHSb6W5DVDXrP6x7B7kn9qXwvv73/dTHJEkk+2dXcnuT7JeUmeM+R5PS/J+e1zuTvJ6iR/mWTxkLZT7WNRkve05/1dSb7Zvsamr+1S4Nr2x1cMPP9jZvWXr4fwyoAWjCQ7AJcAuwBfah8/Bfw1sGKMx3k+8HHg4cBngH8AFgNPBf4QeF9f8z8D7ge+QjPtYBFwGPBu4OnA0X1tlwEvbPt5N820DPrKdfk7mikb1wMfAAp4EXAGcBDwm0P2WQxcDNwDfAJ4BPBi4Mwk91fVh2dwXG3abmnL3We6Q5IPAr9NM53oX2h+f/cH3g4cnuS5VXXvwG6LWc/fxSRPB/4D2IZm2tI3aaYw/SbwgiSHV9VXh+z6OuC5wCeBC2nO0VHmco7+O7Aa+I0kJw0JVb8G7AC8s6ruXkc/0jBPoJk69y2a14Htgd8AzkvynL6wfhbN7+kLgPOAK/r6uA0gyZY058HzgKuAvwfuAg4FTqe5Ctj/mtWzK81r3NXAR4FHAj9s+1wGvBW4EziX5jXqp2k+aPgtmnOWtu1bac6xW2mmJ94E/DzweuCoJAdU1Q8Hjv2wto/FwD+2P/8azfm5B3B82+6its2JNFc6z+3ro//vQnNRVT58bJAHzRvaApaOeLxhoP372/anDmzfF/hxr6+BuilgasTxl7b7HNK37dE0c4jvoZk2MbjPzgM/7zqkzWbAh9u+9xuoO6vdvmTEmC5qTrsHbXtpu8/lwKP6tm8NfLWte9mIv9sPAJv3bf854F7gm/P97+9j/h/A09rf9ftp3mj8KvCEdbQ/pv29+hfgkQN1vfPpxIHts/pdBA4ZPJeBAKva7b850P432u1XApsNGc8a4GlDnsuStv6sge1zOUdf3+7zmlHtgd3n+9/bx8J89M6RgW29388CTh6oe167/fyB7b3z85gRx+mdE6cPnIubAx9s614wYgx/MqS/I9q6bwE7Danfue/Ph7ZtLwEWjxj3qQPbp9rtXwIe3rd9e5oAXsCzh4z3rPn+N93UHvM+AB+b7qPvP5lRj9v62m7Zvqj/EFg0pK/eC/jSge1TzC4MvK7d9u71fG57t/28dcQ4l4zYb9gbjc+2+xwxpP3hbd3nhvzdrgG2HbLP59v6beb7d8DH/D+AXwduHDj3bgHOAX55oO3XaIL34iH9bE5z0+9lA9tn9bvI8DBwYO+NxIjn8MUhbwx65/epI/YZ+sZhjufoDsBa4L8Htu8x7Pz04aP/0TvvBrb1fj+n6Hvj3ld/HXDzwLZjGBEGaD6kurk917cYUr+Y5kOBjw0Zw/foezPeV//Jtv5FM3iO57RtnzSi/mvATQPbptp9njWkfe+5fmjIeM+a73/TTe3hNCFtcFWV6VuxJ80KHl+sIXObaV6gXzGG4ezflp+eSeN26tIfAEfRTF/aeqDJTmMY0940/0lfNKTu88B9NJ/wDrqmHnrJFZrLuND853/HGManCVZVH0tyDs0ndwfR/C4dRDNd5oVJzqZ54X0kzfSZm4Hf75uu2+9umhV6Bq3v7+Lebfm5EfWf6xv7FwbqLltHv2NRVbck+Rjw8iTPrKpL2qrfbcu/3tBj0Cbriqq6b8j264EDZtHP7jSh9RrgLSPO37UMP3//q4ZPcduf5s33Z2Zw/ANoPkh4SZKXDKl/GPCYJDtU1S192++luZow6KK2HPbapzEzDGihWNSW3x9R/70xHWdxW353uobtDU//CTyR5g3H2TRzIe/lgbmL47hhcBFwa1XdM1hRVfcmuRnYcch+t43orzefe/MxjE2bgGpW1lnRPnpLjv4acCbNUprn0PyuB3gMcPIsD3HbiO0z/V3snf83jqjvbV88pG5c/zdM5wyav6vfAy5pbxZ+Bc286HM30hi06bltxPZ7md0iLzu05W6s+/x91JBto86hxcAPqmrtDI+/xTTH7h2/PwzcPCIM9ca0aEidxszVhLRQ9K4GPHZE/eNGbL+f0aF28ZBtt7XlTD7R/x2aILCsqvarquOq6i3VLJX6TzPYf6ZuB7Zvb/56kCRb0NznMOxTV2lOquq+qvoYcGq76TAeOAe/VlVZ12MDDKl37FHn+U8NtOtX4x/OkINUfYXmvp5fT7IdD9w4/KFhQV7ayHrnxjnTnL9PHLLvqHPoNmC7JI+c4fF/MN3/HVV13cB+j24/nBjU+79gtt8TojkwDGihuBL4EfALSYZ9EnDIiP1+ADx22BtpmhuPB13alr84gzH9bFv+85C6g0fs0/uEYzafyn+N5lx89pC6Z7d9XT6L/qSZ6k3dSVXdCfwP8KQk22/kcXytLQ8ZUd/bPo7zYC7naM/7aFZKejnNFKEC/nYMY5JmYl2/u1fSrvw14vVwLi6luVp45AzbbpfkSbM8xhY8sARyv0Pa8mt929bn3NU6GAa0ILTTGD5Ks6zg0v66JPsyfGlNaKbvbAE8aD3zdt3hA4e0/zDNp+yvTvKQN99Jdu77caotDxlo8zTgjSPG07v8+TMj6ofprV/+p2m+BKp3nK1oljaFZiUIaVbSfF/AcwfXF2/rHge8sv2xNw//XTRze88csS74dkn2Htw+BhfTLIV4UJIXDxzzxTSh+GqaVUfW11zO0Z6/p/mk8g9pPhD4bFWtHsOYpJkY+btbzXK/p9NcRVs+7NP8JD+V5OdmcbzT2/KdSR5yNX1gW+8q498m+ekhbbdOsv/g9taf9n9HR/thxFvaHz/U1+4HNAF8Lueu1sF7BrTBZciXC/U5t6quaP/8JprVc36/DQC97xn4DeB84FeG7H86TRB4X5LDaW66eirNJw3/Bjzoi1uq6uYkL6NZC/3CJJ8Gvg5sS7Me8uNppgZBc4/AHwCnJTmU5sas3do+/6Ud16AL2n3+NsknaNZmvq2q3jPqL6Cq/j7JC2hWffmfJOfS/If3wnYsH6uqj47aX1qH/Wjubfleki/xwJf2PBF4Ps1Nw+fRnA9U1ZlJ9gGOA1Yn+Xfg2zRL/T2R5k35h4BXjXOQVVVpvlzws8A/JTmP5pPOPWjOgzuAl1fV/WM43KzP0b5x/ijJh4ET2k1/M4bxSDP1ZZor6L/fvmHu3WN3ervwxttpXv9eBfxyks/R3B+3I81r14HAm2m+w2NaVbUiyduBPwZWta9N19NM5z2I5mrAMW3bC5K8AfhT4Jok59P8f/Momu9SOJjmNX3wKsONNPfefSPJv9KsLPhimtf+M6rqJwsGVNWdSb4CPCvJR2k+ILgP+Neq+vpMnpNGmO/ljHxsug+mX1r0IUuk0cwTPBP4P5qVD66g+c/mEIYsLdrucxDNJ5s/ovnU/1M0b+yXMrC0aN8+T6J5s/9dmnXYv0+zcs/vDrT7OZovQLqJZvnElTT3EixhxBJnwGtp1ky/u20z1Vd3EQNLzLXbN6N5A/bV9nn8qD3W8fStrT7wd3vRiL/3s1jH0ok+uvOgCbfH09wgfFV7ftxD8wJ8Ps2XBg37/folHvjSoHtobua7DHgHsOdA21n9Lk5zLu9B830IN9KsTHIj8BFgjyFtR57fbf1Yz9G++qe2+9zAkCUcffgYfLDupUXPGrHPqNeKI2lCwZ088Dq6pK8+NF8sdgHNghf30LzOfYnmA7fHz3QMfe2OollR6Nb2nLm+/T/lsCFtDwI+1p4f99C8ll9Bc9Vx34G2U+1jEfDedpx3t+fmCTTTFwf7/1maJU9voblncOhSqz5m90j7lytJkqbRTkH8EPCOqvrjeR6ONLGSTAFU1ZL5HYm8Z0CSpBloV/d6Lc2yj04RkrRJ8J4BSZLWIclBNHOeDwGeArynqr4zr4OSpDExDEiStG7PofkypVtplhL9w/kdjiSNj/cMSJIkSR3lPQOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUnSRpOkklw0sG1pu/2QeRmUJHWYYUCSNjHtG+v+x31Jbk7yuSS/Od/j2xCGhQxJ0vS2mO8BSJI2mGVtuSWwB/BC4NAk+1TVa+dtVA/1HuAfgW/P90AkqWtSVfM9BknSGCUpgKrKwPbDgc+2P+5SVVMbeWi9sX2+qg6ZhH4laVPnNCFJ6oiqugC4EgjwdHjwfP0kL0vylSR3Jpnq7ZdkqyRvTHJFkjVt/ZeTvHTYcZI8LMkfJ1md5O4k1yZ5R5KHj2g/8p6BJHsmOTPJVNvXTUm+mOTVbf0xvfADHDwwPWrpQF+/nuQLSW5PsjbJf7fP6yHjao83lWTbJO9q//zjXp9Jtmmf4zeS/DDJHe3z/ack+0zzTyFJC4bThCSpW3pXCwYvC78OeC7wSeBCYBFAksXA54CnAZcDZ9J8kPQ84O+TPKmq3vKTzpMAHwNeAKymmQL0MOC3gafMaqDJ84GPAw8HPgP8A7AYeCrwh8D7gCtopkOdDFwHnNXXxUV9ff0J8EbgZuDvgTuBXwT+BHhekudW1Y8HhvCw9rlvD6wAfghc2z7HzwDPBL4MfAC4F3g8cAjwRWDlbJ6rJM0Xw4AkdUSS59DcO1DAfw5UHwYcUFVfG9h+Gk0Q+KOq+ou+vh4BnAu8KcknquqKtuqlNEHgUuDQqrqrbX/ykGOua6yPpnnTvgVwWFV9fqB+Z4D2uFe0/U9V1dIhfR1AEwSuB55RVd9rt78ROAf4JeAPaIJBv58CvgkcXFVr+vp7Ck0QOLeqXjRwrM1og5QkTQKnCUnSJqqdfrM0ySlJPkHzaXaA06rquoHm7x8MAkl2AH4L+Gp/EABo3+T/Udvfy/qqjm3LN/WCQNv+VuDtsxj+K4BtgfcNBoG2v+/Moq/fbst39IJA28e9NFdE7gd+Z8S+r+sPAgPWDhnX/VX1g1mMTZLmlVcGJGnTdXJbFnAbzfSVD1bVR4a0vWzItqcDmwMPmX/f2rIt9+rbtjfNm+svDWl/0bQjfsD+bfnpWewzyt5t+bnBiqq6Osl3gCcmWVxVt/VV3wV8fUh/36SZnvTSJE8AzqN5vl+tqnvGMF5J2mgMA5K0iRpcTWga3xuybYe2fHr7GOVRfX9eBNw6ZP79qGOMsrgtvzuLfUbpTdu5cUT9jcDPtO1u69t+Uw1Zcq+q7ktyGPBW4MXAn7dVdyT5MPDGqrpzDOOWpA3OaUKSJHjoDcUAt7flqVWVdTwOHdhn+yRbDunvcbMYz21tudMs9hml9zxGHf+nBtr1jFx7u6p+UFUnVdXjgd1ophldCbyG5sZmSZoIhgFJ0iiX0Uz5edYs9rmc5rXloCF1h8yin0vb8hdn2P5+milNw/TuhXjI8ZP8LLAzcO3AFKEZq6r/raoPAgfTrFL0grn0I0nzwTAgSRqqqm4CPgrs266p/5CppUl2TfLEvk0fastT2hWHeu22B97CzH2YZinPVyd59pDj7jyw6RaapT2HObMt35LkMX19bA78Fc1r4QdnOrAkT0zypCFV29Esg/qQG4slaaHyngFJ0rq8hmYazNuAo5N8Cfg+8NM0Nw4/nWY50Wvb9v8A/AbwK8A3kpxHc6Pxi2mWFt11JgetqpuTvAz4BHBhkk/T3My7LfDzNG/8+0PIBcD/S/JJmjX+7wW+UFVfqKpLkvwFzXcTfKNdWWkNzVWHJ9Pc/PuXs/g7eSpwTpKVwDeAG4DH0FwR2JIH7iGQpAXPMCBJGqmqfpjkYOB3aZYQ/TXgETSB4BrgJOCzfe0ryUuANwDH0ISJG2muGLyNZoWemR77U0n2pVnC9HDgCOAHNHPz/3Sg+Yk0c/wPB46i+bR/GfCFtq8/SvK1djwvp3nTvprmasU7Z7kK0Ffb4x8MHElzReD/aELI8qoaxwpIkrRRZMhCCZIkSZI6wHsGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI4yDEiSJEkdZRiQJEmSOsowIEmSJHWUYUCSJEnqKMOAJEmS1FGGAUmSJKmjDAOSJElSRxkGJEmSpI76/wH8SIRB2IzfAwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 261, "width": 385 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mod_intercept = smf.ols(data = df_income, formula = \"Income ~ 1\").fit()\n", "df_r2 = pd.DataFrame({'R2': [mod_edu.rsquared, mod_seniority.rsquared,\n", " mod_intercept.rsquared],\n", " 'Predictors': ['Education', 'Senioritiy', 'Intercept']})\n", "sns.barplot(data = df_r2, x = \"Predictors\", y = \"R2\")" ] }, { "cell_type": "markdown", "id": "58e151b7", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## The return of heteroscedasticity" ] }, { "cell_type": "markdown", "id": "b51077b5", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Review: Homoscedasticity\n", "\n", "> **Homoscedasticity** means that the residuals are evenly distributed along the regression line.\n", "\n", "- The opposite of homoscedasticity is **heteroscedasticity**. " ] }, { "cell_type": "code", "execution_count": 7, "id": "3b63aaff", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAHwCAYAAAD5Keq8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAABhkElEQVR4nO3df3xb+V3n+9dXViRLdvxrHHucmZDMJJ14QmFKxxSYLm0nu3RLC/1BZzbzAEovdymUW2BLy4X7oC10WXgs3RYoLVzaLdDClqXZTh8U6Ja2lKQMMECvp22GknEmPyapkzh2PJYty/pxLOl7/5DkUWRJlmT9OEd6Px8PPzSRjuQjH3n8Pt/z+X6+xlqLiIiIiIi4m6/TOyAiIiIiIjtTcBcRERER8QAFdxERERERD1BwFxERERHxAAV3EREREREPUHAXEREREfEABXcREREREQ9QcBcRERER8QAFdxERERERD1BwFxERERHxAAV3EREREREPUHAXEREREfEAf6d3wC2MMc8AQ8DlDu+KiIiIiHSvQ0DUWntXvU9UcH/OUCgUGrv33nvHOr0jIiIiItKdnnrqKRKJREPPVXB/zuV777137Iknnuj0foiIiIhIl7r//vv5yle+crmR56rGXURERETEAxTcRUREREQ8QMFdRERERMQDFNxFRERERDxAwV1ERERExAMU3EVEREREPEDBXURERETEAxTcRUREREQ8QMFdRERERMQDFNxFRERERDzA3+kdEBERERF3WYwmubgUI5XOEvT7ODwxyORQf6d3q+cpuIuIiIgIABeWYpyaW+TcjRircYd01uL3GUbCAY7ePsjx6UmOTAx2ejd7loK7iIiIiDB7eYWTs/NcXo4TTTiMhAME/D5iqQxXI3HmV+KcX4pxYuYAM4fGOr27PUnBXURERKTHXViKcXJ2nrPXo4wNBLhrfJQ+n9l6PJO1LKwlOHs9ysnZeUbCAY28d4CCu4iISI9SHbMUnJpb5MpynLGBAHeOhrc93uczW/dfWY5zem5Jwb0DFNxFRER6jOqYpdhiNMm5GzHWEg73jY9W3XZqOMSZ+QjnFtdZjCZ1otdmCu4iIiI9RHXMUuriUu4EbiQcuKU8ppy+/AleZMPh4lJMwb3NFNxFRER6hOqYpZxUOks6awn4a1veJ+D3kc5aUulsi/dMSmkBJhERkR5RWsdcOrpaqGMeGwhs1TFL9wv6ffh9BqfGIO6ks/h9hmCNQV+aRz9xERGRHlBcxzw1HKq67dRwiLWEs1XHLN3t8MQgI+EAq3GHTNZW3TaTtazGHUYHAhzW1Zi2U3AXERHpAbupY5buNjnUz9HbBxkOBVhYS1TddmEtwXAowNHJvapv7wAFdxERkR6gOmap5vj0JAfHw6xsOFyNxLeNvGeylquROCsbDgfHwzw4PdGhPe1tmpwqIiLSAwp1zLFUpqbtnXSWwaBfdcw94sjEICdmDnBydp4ry3HOzEe2Og456SyrcYfhUIBj+4c4MXNAk5Y7RMFdRESkBxTqmAujqdXKZQp1zAfGwqpj7nKli3A99MI7efLqGnM31rd6/A8G/RwYC3N0ci8PTk8otHeQgruIiEgPKNQxz6/EWVhLlF0ds0B1zN1vp0W4Hp65k2y+VEqr6rqHgruIiEiPOD49yfmlGGevR4Fc95hyfdxXNhyO7R9SHXOXqmcRrgeOjHd6d6WIgruIiEiPUB2zaBEub2vKjBNjzEPGmA8aY/7OGBM1xlhjzMfreP4f5J9jjTFHqmz3RmPMl40xMWPMmjHmS8aY72vGexAREekFM4fG+ImXHOZ7jk3y/DtGGAz68RnDYNDPt9w5wvccm+QnXnKYmUNjnd5VaQEtwuVtzRpxfydwHxADrgLTtT7RGPP9wP+Zf27FUzpjzPuAt+df/yNAAHgE+EtjzE9ba3+n4b0XERHpIUcmBjkyMbhtYqLqmLtb8SJc942PVt12ajjEmfnI1iJc+ly4Q7OC+8+SC9QXgJcCp2t5kjFmH7kQfhK4Pf/ccts9QC60XwS+3Vobyd//XuAJ4H3GmM9Yay/v7m2IiIj0jsmhfgWyHrKbRbj0OXGHppTKWGtPW2vPW2urr5O73X/P375lh+3enL/9tUJoz3/fy8DvAkHgR+v83iIiIiI9Q4tweV/HJqcaY/4P4LXA66y1zxpT9czveP72c2Ue+yvgXfltfrmG7/tEhYdqLu8RERER8RotwuV9HTkSxpiDwG8DH7fWfnqHbQeAO4CYtXahzCbn87f3NHUnRURERLpIYRGu1bhDJlu9SKKwCNfoQECLcLlI20fcjTE+4I/ITUb9mRqeMpy/XavweOH+kVq+v7X2/gr79QTwwlpeQ0RERMRrtAiX93VixP1nyU1CfVNxvXoT1FtfLyIiItJTjk9PcnA8zMqGw9VIfNvIeyZruRqJs7LhcHA8rEW4XKatI+7GmOcBvwZ81Fr72RqfVhhRH67w+E4j8iIiIiKCFuHyunaXynwz+Q4wxphKXWDO5yeqvs5a+2lr7YYx5hpwhzFmqkyd+/Pyt0+3ZpdFREREusfMoTFGwgFOzy0xd2Od1bhDOmsZDPo5MBbm6OReHpyeUGh3oXYH98vAH1R47FXkerl/Eojmty04BbwBeAXw0ZLnfW/RNiIiIiKyAy3C5U1tDe7W2q8BP1buMWPMl8gF91+01l4oefhD5IL7O4wxny5agOkQuR7wKbYHehERERGpQotweUtTgrsx5rXkerJDLnwDfJcx5mP5/1621v5co69vrX3cGPObwNuAJ40xjwIB4AQwBvy0Vk0VERERkVp49UpDs0bcXwC8seS+u/NfAFeAhoM7gLX27caYJ4GfAn4cyAJfAd5rrf3Mbl5bRERERLrfhaUYp+YWOXcjtlXb7/cZRsIBjt4+yPHpSVfX9jcluFtr3w28e5ev8bIatvkjcj3gRURERERqNnt5hZOz81xejhNNOFvddGKpDFcjceZX4pxfinFi5gAzh8Y6vbtltX0BJhERERGRdrqwFOPk7Dxnr0cZGwhw1/gofT6z9Xgma1lYS3D2epSTs/OMhAOuHHnvxAJMIiIiIiJtc2pukSvLccYGAtw5Gr4ltAP0+Qx3joYZGwhwZTnO6bmlDu1pdQruIiIiItK1FqNJzt2IsZZwmBoOVd12ajjEWsLh3OI6i9Fkm/awdgruIiIiItK1Li7lJqKOhAPbRtpL9eUnqkY2HC4uxdq0h7VTcBcRERGRrpVKZ0lnLQF/bbE34PeRzlpS6WyL96x+Cu4iIiIi0rWCfh9+n8GpMYg76Sx+nyFYY9BvJ/ftkYiIiIhIkxyeGGQkHGA17pDJ2qrbZrKW1bjD6ECAw+oqIyIiIiLSPpND/Ry9fZDhUICFtUTVbRfWEgyHAhyd3OvKlVQV3EVERESkqx2fnuTgeJiVDYerkfi2kfdM1nI1Emdlw+HgeJgHpyc6tKfVaQEmEREREelqRyYGOTFzgJOz81xZjnNmPrK1cqqTzrIadxgOBTi2f4gTMwdcufgSKLiLiIiISA+YOTTGSDjA6bkl5m6ssxp3SGctg0E/B8bCHJ3cy4PTE64N7aDgLiIiIiI94sjEIEcmBlmMJrm4FCOVzhL0+zg8MejKmvZSCu4iIiIi0lMmh/o9EdRLaXKqiIiIiIgHKLiLiIiIiHiAgruIiIiIiAcouIuIiIiIeICCu4iIiIiIByi4i4iIiIh4gIK7iIiIiIgHKLiLiIiIiHiAgruIiIiIiAcouIuIiIiIeICCu4iIiIiIByi4i4iIiIh4gIK7iIiIiIgHKLiLiIiIiHiAgruIiIiIiAcouIuIiIiIeICCu4iIiIiIByi4i4iIiIh4gIK7iIiIiIgHKLiLiIiIiHiAgruIiIiIiAcouIuIiIiIeICCu4iIiIiIByi4i4iIiIh4gIK7iIiIiIgH+Du9AyIiItJai9EkF5dipNJZgn4fhycGmRzq7/RuiUidmhLcjTEPAS8FXgDcB+wF/sRa+8Nltn0e8APAvweeB0wCEeCfgPdba09X+T5vBN4CHAMywFeB91lrP9OM9yEiItJNLizFODW3yLkbMVbjDumsxe8zjIQDHL19kOPTkxyZGOz0bopIjZo14v5OcoE9BlwFpqts+1+AE8BZ4LPACnAUeDXwamPMf7LWfqD0ScaY9wFvz7/+R4AA8Ajwl8aYn7bW/k6T3ouIiIjnzV5e4eTsPJeX40QTDiPhAAG/j1gqw9VInPmVOOeXYpyYOcDMobFO766I1KBZwf1nyQXqC+RG3iuOmgOfA95jrf1q8Z3GmJcCfw281xjzSWvtQtFjD5AL7ReBb7fWRvL3vxd4AnifMeYz1trLTXo/IiIinnVhKcbJ2XnOXo8yNhDgrvFR+nxm6/FM1rKwluDs9SgnZ+cZCQc08i7iAU2ZnGqtPW2tPW+ttTVs+7HS0J6//2+BL5EbSX+g5OE3529/rRDa88+5DPwuEAR+tLG9FxER6S6n5ha5shxnbCDAnaPhW0I7QJ/PcOdomLGBAFeW45yeW+rQnopIPdzWVWYzf5suuf94/vZzZZ7zVyXbVGWMeaLcF9XLe0RERDxhMZrk3I0YawmHqeFQ1W2nhkOsJRzOLa6zGE22aQ9FpFGuCe7GmIPAvwXiwGNF9w8AdwCx4vKZIufzt/e0fCdFRERc7uJSbiLqSDiwbaS9VF9+ompkw+HiUqxNeygijXJFO0hjTBD4E3IlLz9fXA4DDOdv1yo8vXD/SC3fy1p7f4V9eAJ4YS2vISIi4lapdJZ01hLw1zY2F/D7SGctqXS2xXsmIrvV8RF3Y0wf8D+AFwMngfc1+FI71teLiIh0u6Dfh99ncGoM4k46i99nCNYY9EWkczr6W5oP7R8HHgb+F/DDZSa4FkbUhylvpxF5ERGRnnF4YpCRcIDVuEMmW31MK5O1rMYdRgcCHFZXGRHX61hwN8b4gT8l14v9fwI/aK0tnZSKtXYDuAYMGmOmyrzU8/K3T7dqX0VERLxicqifo7cPMhwKsLCWqLrtwlqC4VCAo5N7tZKqiAd0JLgbYwLAo+RG2v8YeIO1NlPlKafyt68o89j3lmwjIiLS045PT3JwPMzKhsPVSHzbyHsma7kaibOy4XBwPMyD0xMd2lMRqUfbg3t+IuqfAa8B/gD4UWvtToV4H8rfvsMYM1r0WoeAtwAp4KPN31sRERHvOTIxyImZAxzbP0RqM8uZ+QiXbsa4Golz6WaMM/MRUptZju0f4sTMAS2+JOIRTekqY4x5LfDa/D9vz99+lzHmY/n/XrbW/lz+vz8EvBJYJlcC80vGbGtX9SVr7ZcK/7DWPm6M+U3gbcCTxphHyS3UdAIYA35aq6aKiIg8Z+bQGCPhAKfnlpi7sc5q3CGdtQwG/RwYC3N0ci8PTk8otEvHLEaTXFyKkUpnCfp9HJ4YVMnWDprVDvIFwBtL7rs7/wVwBSgE97vyt+PAL1V5zS8V/8Na+3ZjzJPATwE/DmSBrwDvtdZ+ptEdFxER6VZHJgY5MjGogCSucmEpxqm5Rc7diG2dUPrzawocvX2Q49OTOqGsoCnB3Vr7buDdNW77sl18nz8C/qjR54uIiPSiyaF+BXVxhdnLK5ycnefycpxoIrdQWMDvI5bKcDUSZ34lzvmlGCdmDjBzaKzTu+s6rliASURERES624WlGCdn5zl7PcrYQIC7xkdvWd03k7UsrCU4ez3Kydl5RsIBjbyX0GoLIiIiItJyp+YWubIcZ2wgwJ2j4VtCO0Cfz3DnaJixgQBXluOcnlvq0J66l4K7iIiIiLTUYjTJuRsx1hIOU8OhqttODYdYSzicW1xnMZps0x56g4K7iIiIiLTUxaXcRNSRcGDbSHupvvxE1ciGw8WlWJv20BsU3EVERESkpVLpLOmsJeCvLXoG/D7SWUsqvdNSP71FwV1EREREWiro9+H3GZwag7iTzuL3GYI1Bv1eoZ+GiIiIiLTU4YlBRsIBVuMOmaytum0ma1mNO4wOBDisrjK3UHAXERERkZaaHOrn6O2DDIcCLKwlqm67sJZgOBTg6ORerT9QQsFdRERERFru+PQkB8fDrGw4XI3Et428Z7KWq5E4KxsOB8fDPDg90aE9dS8twCQiIiJCrmXhxaUYqXSWoN/H4YlBjfg20ZGJQU7MHODk7DxXluOcmY9srZzqpLOsxh2GQwGO7R/ixMwBLb5UhoK7iIiIdKVag/iFpRin5hY5dyPXsjCdtfjzLQmP3j7I8elJhcgmmTk0xkg4wOm5JeZurG/9vAeDfg6MhTk6uZcHpyf0865AwV1ERES6Sj1BfPbyCidn57m8HCeacLZGgGOpDFcjceZX4pxfinFi5gAzh8Y6/M66w5GJQY5MDOoKRwMU3EVERKRr1BPER8IBTs7Oc/Z6lLGBAHeNj96yOFAma1lYS3D2epSTs/OMhAMaCW6iyaF+BfU6KbiLiIhIV7iwFKsriI+GA1xZjjM2EODO0fC21+vzma37ryzHOT23pOAuHaXgLiIiIl3h1NxizUH8/I0YWWtJpTPcNz5a9XWnhkOcmY9wbnGdxWhSo8TSMWoHKSIiIp63GE1y7kaMtYTD1HCo6rZTwyGWN5IsxVIMBP23jMqX05evj49sOFxcijVzt0XqouAuIiIinndxKTcRdSQcqCmIDwT8OOksm5nqq3gWBPw+0llLKp1txu6KNETBXURERDwvlc6SzloC/tqiTWE7p8Yg7qSz+H2GYI2vL9IK+vSJiIiI5wX9Pvw+U3MQ9/t8BPp8bDjpbSt4lspkLatxh9GBAIc1OVU6SMFdREREPO/wxCAj4QCrcaemIB530uzbG2R8MMjCWqLq9gtrCYZDAY5O7tXEVOkodZURERGRtmv24juTQ/0cvX2Q+ZU4C2uJsl1lCgpB/Nu+aYSVuMPZ61EgN2m1XPvIlQ2HY/uHeHB6ouH9E2kGBXcRERFpm3pWNa3X8elJzi/Fag7iD88cYDXucHJ2nivLcc7MR7YWbHLSWVbjDsOhAMf2D3Fi5oB6uEvHKbiLiIhIW9SzqunMobG6X//IxCAnZg7UHcRHwgFOzy0xd2N962RiMOjnwFiYo5N7eXB6QqFdXEHBXURERFqu3lVNR8KBhsLyzKGxuoP4kYlBjkwMNr18R6TZFNxFRES6hJuDZz2rml5ZjnN6bqnhUe5Gg/jkUL9rfl4i5Si4i4iIeFwr68aboXhV0/vGR6tuOzUc4sx8hHOL6yxGk7uesNprQdzNJ2+yewruIiIiHtbquvFmqHdV05FwgMiGw8WlmEJnjdx+8ibNoeAuIiLiUe2qG9+tRlY1TWctqRoXU+p1Xjh5k+ZQcBcREfGodtaN70ZhVdNYKlPT9k46y2DQT7DGoN/LvHLyJs2h3wgREREPKq4bnxoOVd12ajjEWsLZqhtvt3pXNV2NO4wOBDisgLmj0pO30lKkwsnb2EBg6+RNvEvBXURExIN2UzfeboVVTYdDARbWElW3LaxqenRyr+rbd+ClkzdpDgV3ERERD/Ja3fjx6UkOjodZ2XC4GolvG3nPZC1XI3FWNhwOjod5cHqiI/vpJV46eZPmUI27iIiIB3mtbrzRVU2lMq+dvMnuKbiLiIh4UKFuvDB6XW3EtVA3fmAs3NG68UZWNZXKvHbyJrun4C4iIuJBhbrx+ZU4C2uJsl1lCtxUN97oqqbdoNnv2Ysnb7I7Cu4iIiJN1M5Aenx6kvNLMc5ejwK5CYjlWgGubDgc2z/kqrrxXlrVtFWLI3n15E0ap+AuIiLSBJ1YuVJ14+7X6sWROnHy1otXS9xCwV1ERGSXOrlyperG3asdiyO18+StEyenteqVkwkFdxERkV1ww8qVvVw37mbtWtm2HSdv7Tw5redz7OaTiVZoSnA3xjwEvBR4AXAfsBf4E2vtD1d5zgPAO4HvBPqBC8AfAh+01padHm2MeSPwFuAYkAG+CrzPWvuZZrwPERGRerUrnNWil+rG3a54caT7xkerbjs1HOLMfGRrcaRGjmErT97adXJabwjv5JWuTmnWiPs7yQX2GHAVmK62sTHmNcCngCRwElgBvh/4LeDFwMNlnvM+4O351/8IEAAeAf7SGPPT1trfadJ7ERERqUm7w5l4x24WR9rNZ6MVJ2/tODmtN4S74UpXJzQruP8suUB9gdzI++lKGxpjhsgF7wzwMmvtbP7+dwGngIeMMY9Yaz9R9JwHyIX2i8C3W2sj+fvfCzwBvM8Y8xlr7eUmvR8REZEddSqcift1y+JI7Tg5bSSEu+lKVzs1pQO/tfa0tfa8tdbuvDUPAfuATxRCe/41kuRG7gF+suQ5b87f/lohtOefcxn4XSAI/GiDuy8i0pMWo0kev7DM6bklHr+wzGI02eld8pxuCWfSfIXFkZwaj7WTzuL3GdctjrSbk9NalYbw0u9TCOFjAwGuLMf5i69d2zqZmBoOVX3tqeEQawln62TC6zoxOfV4/vZzZR57DIgDDxhjgtbaVA3P+SvgXfltfnmnb26MeaLCQ1XLe0REukWvTeZqJa1cKZV0y+JIrT45bWRE/2vzq2QtPXmlqxP/5ziav3269AFrbRp4htwJxd0AxpgB4A4gZq1dKPN65/O39zR/V0VEusvs5RU+/NhF/vrsEl+/tkoslSZrLbFUmq9fW+WLZ5f48GMXmb280uld9YRCOFuNO2Sy1S86F8LZ6EDAdeFMmq+wONJwKMDCWqLqtm5eHKnVVw4aGdFfS2wSTW725JWuToy4D+dv1yo8Xrh/pMHtq7LW3l/u/vxI/AtreQ0RES/q1clcraSVK6UaL69sW9DqKweNjOgnNjMYqOtkoluudLnxHRQ+EbXUyxerd3sRkZ5Sbx3p6bmlDu2ptxyfnuTgeJiVDWcr3BTLZC1XI3FWNhwOjoddGc6kNQqLIx3bP0RqM8uZ+QiXbsa4Golz6WaMM/MRUptZV69s2+orB42M6A8F/QyH9vTkla5OjLgXRsiHKzw+VLLdTtvvNCIvItLz1Lawddq5cqV4TzesbNvKKweNjOh/y50jTA3388+XVnruSlcngvs5YIZcTfotE0WNMX7gLiANXAKw1m4YY64BdxhjpsrUuT8vf7utZl5ERHLUtrC1uiGcSet4fWXbVp6cNlpu9uD0BDeiSU+XITWiE8H9FPBDwCuAPy157CVAGHisqKNM4TlvyD/noyXP+d6ibUREpAy1LWw9r4czaT0vr2zbypPTRkb0e/VKVyeC+6PAe4BHjDEfLFqAqR/41fw2v1fynA+RC+7vMMZ8umgBpkPAW4AU2wO9iIjkqW1h+3g5nIlU06qT00ZDeC9e6WpKcDfGvBZ4bf6ft+dvv8sY87H8fy9ba38OwFobNca8iVyA/5Ix5hPACvBqcq0iHwVOFr++tfZxY8xvAm8DnjTGPAoEgBPAGPDTWjVVRKSybukpLSKd14qT00ZDeK9d6WrWiPsLgDeW3Hd3/gvgCvBzhQestZ82xrwUeAfweqAfuEAumH+g3Aqs1tq3G2OeBH4K+HEgC3wFeK+19jNNeh8iIl1JbQtFxO12E8J75UpXU4K7tfbdwLvrfM4/AK+s8zl/BPxRPc8REZGcbugpLSKN8dKIdK+E8EZ0osZdREQ6oFcnc4n0sgtLMU7NLXLuRmyr/MSf7xx19PZBjk9P6nfdQxTcRUR6SC9O5hLxglaMiM9eXuHk7DyXl+NEE87WiXosleFqJM78SpzzSzFOzBxg5tBYk96JtJKCu4hIj+m1yVwibtaqEfELSzFOzs5z9nqUsYEAd42Pli2NO3s9ysnZeUbCAZ2we4CCu4hIj1IdqUhntXJE/NTcIleW44wNBMpORu/zma37ryzHOT23pODuAQruIiIiIm3WyhHxxWiSczdirCUc7hsfrbrt1HCIM/MRzi2usxhN6mTe5bSyhoiIiEiblY6Il66tUBgRHxsIbI2I1+riUq7sZiQcqLpmQ+H7jIQDRDYcLi7FGnov0j4K7iIiIiJtVDwiPjUcqrrt1HCItYSzNSJei1Q6SzprCdS48nHA7yOdtaTS2Zq2l85RcBcRERFpo3pGxFPpDMYYzi+u8xdfu1ZTeA/6ffh9BqfGIO6ks/h9hmCNQV86RzXuIiIiIk20U8emWkbEo4lNrq0mWEtsshZ3sMBnnlxg7kZsx24zhycGGQkHuBqJk8naqicHmaxlNe5wYCzMYU1OdT0FdxEREZEmqLW1Y2FEPJbKlH2dm+spLt2MsZ5M42SyZG3udZxMlq9fW92x28zkUD9Hbx9kfiXOwlqibFeZgoW1BMOhAEcn92piqgcouIuIiIjsUj2tHauNiEcTm1y6GSMSdwj6+xgN7iGSL6s5OrmXgL+vpm4zx6cnOb8U4+z1KJCrlS/XtWZlw+HY/iEenJ5o/Q9Jdk3FTCIiIiK7UNzasX+Pj/sOjHL3vkHuHA1z975B7jswSnCPbytsryfTHL19kOFQgIW1xC2vdW01wXoyTdDfx0DQT3IzS6Cvj5HQHkIBf83dZo5MDHJi5gDH9g+R2sxyZj7CpZsxrkbiXLoZ48x8hNRmlmP7hzgxc0A93D1CI+4iIiIiu9DIYkflRsRT6QxriU2cTJbR4B42UmlS6Qyj4QD7R27tPlNL//WZQ2OMhAOcnlti7sb6VvnOYNDPgbEwRyf38uD0hEK7hyi4i4iIiDSo0cWOXv2C/ZyYOcDJ2XmuLMc5Mx/BGMNa3CFrLZG4Q6Cvj9FwgMP7BhgK7bnltUr7r1eqTz8yMciRicEdJ8yKNyi4i4iIiDRoN4sdPXBk/JYR8QtL61jYmtA6EtrD/pHQttBeUE//9cmhfgX1LqDgLiIiItKg3S52VDwi/hdfu8ZnnlzAyWQ5OrmXUKB6THPSWQaDfvVf7yEK7iIiItJTmlk2slNrx1KVwvbkUD+vfsEdzN2I8fVrqwT8fVVfR/3Xe5OCu4iIiPSEWvus16OZix2p/7rsRMFdREREul49fdbLLWpUSbPDtvqvSzUK7iIiIuIareh+UtxnfWwgwF3jo2XD8E6LGlXSzLBd6L9e3G2mcJLhpLOsxh2GQwH1X+9RCu4iIiJVqI1ee7SijKWgkT7r9XyvZodt9V+XShTcRUREymhlkJRbtaqMBRrvs15pUaNKmh221X9dylFwFxERKdHKICm3anUZy276rNcbkFsRttV/XYopuIuIiBRpdZCUW7W6jGW3fdYbobAtraKO/SIi0lMWo0kev7DM6bklHr+wzGI0ecvjpUGydJS2ECTHBgJbQVIaU1zGMjUcqrrt1HCItYSzVcZSq0KfdafGIO6ks/h9RosaiStpxF1ERHpCLTXre/v9bamHlpx2lLE0s8+6SKcpuIuISNertWb92NRQ2+qhpT1lLFrUSLqJgruIiHS1emrWF1YTpNJZ+vdUX26+oBn10L2sUMYSS2Vq2t5JZxkM+usuY9GiRtItFNxFRKSr1TP58WY0RdpabhuoPtpe0GiQlJx2lbFoUSPpFgruIiLStert4X09EiedheVYioO3DageusXaWcaiRY2kGyi4i4hI16p38uP43n6ejTn4+4zqoduknWUsWtRIvE7BXUREulYjkx9HB/YQ9PexsuEAqodutU6UsajPuniVgruIiHStRiY/DvXv4d8cGefsjajqodtEZSwitVFwFxGRrtXo5MdXfusU333PPgXJNlIZi8jOFNxFRFxI4aU5djP5cXIIBckOUBmLSGUK7iIiLlLL6p4a5d1ZcdgeDQeYHApyaXkDqL9mvZNBUicNIlJMwV1ExCVqXd3zxMwBZg6NdXp3XanSiU86a+nzwWp8k6Vo0vU16zqBE5FyFNxFRFygntU9T87OMxIOKLiVqHbisxp3CPT1YXzPjbi7tWZdJ3Ai5ekKlIK7iIgr1LO655XlOKfnllwRMt2i1hOflQ2HwX4/L71nH+ODQdf98dcJnMh2ugL1nI6u0WyMeZUx5gvGmKvGmIQx5pIx5pPGmO+qsP0DxpjPGmNWjDFxY8yTxpi3GmP62r3vIiLNUry659RwqOq2U8Mh1hIO5xbXWYwm27SH7ld64lPaPaZw4jM2EGApmmI1vsmD0xM8cGTcNaEd6nsfhRM4kW42e3mFDz92kb8+u8TXr60SS6XJWksslebr11b54tklPvzYRWYvr3R6V9uiYyPuxpj3AD8PPAt8GlgGjgCvAV5vjPkRa+3Hi7Z/DfApIAmcBFaA7wd+C3gx8HA7919EpFnqXd1zJBwgsuFwcSnmqtDZKcUnPveNj1bddmo4xJn5yNaJTzt/fjtd5vfK+xBpF12B2q4jwd0Yczvwc8Ai8K3W2qWixx4ETgG/Anw8f98Q8BEgA7zMWjubv/9d+W0fMsY8Yq39RFvfiIhIEzSyumc6a0mlsy3eM29w+4lPrZf53f4+GqW6ZGmUSgi369SI+0FyZTr/XBzaAay1p40x68C+orsfyv/7jwuhPb9t0hjzTuBvgJ8EFNxFxHMaWd1zMOgnWGPQ73ZuPvGpZ6Kpm99HI1SXLLuhK1DldSq4nwcc4EXGmHFr7XLhAWPMS4C95MpnCo7nbz9X5rUeA+LAA8aYoLU2Ve0bG2OeqPDQdI37LiLSVI2u7nlYoQdw74lPvZf5X3RozJXvoxHqjCO71a1XoHarI8HdWrtijPkF4DeBs8aYT5OrdT8MvBr4a+Anip5yNH/7dJnXShtjngG+GbgbeKqFuy4i0nS7Wd1T3HviU+9l/qmhfle+j3qpLlmaoduuQDVLx07TrbXvB36A3MnDm4D/h9wE03ngYyUlNMP527UKL1e4f6SG73t/uS9grv53ISLSHMenJzk4HmZlw9kKbsUyWcvVSJyVDYeD4+Ftq3v2ssKJz3AowMJaouq27TrxaaRT0PW1JPtH+l31PhqhzjjSDIUraU6NQdxJZ/H7jCuvQDVTx96dMebngUeBj5EbaR8A7gcuAX9ijPlv9bxc/tZW3UpExKWOTAxyYuYAx/YPkdrMcmY+wqWbMa5G4ly6GePMfITUZtZVq3u6idtOfBq9zP9NY2FXvY96qbWpNEvhStpq3Nn2e1CqcAVqdCDguitQzdaprjIvA94D/Jm19m1FD33FGPM6ciUxbzfGfMhae4nnRtSHKW8of1tpRF5ExPVmDo0xEg5wem6JuRvrWxP63Li6p9sUTnxOzs5zZTnOmfnIVl21k86yGncYDgXaduLT6GX+8cGgq95HvVSXLM2iEsLyOjU59fvyt6dLH7DWxo0xXwZeB3wbuRH4c8AMcA9wy+RSY4wfuAtI57cVEfGsIxODHJkYVAu9BrjpxGc3E2bd9D7qpbpkaabj05OcX4px9noUyF2lqbQi8rH9Q667AtUKnQruwfztvgqPF+538rengB8CXgH8acm2LwHCwGM7dZQREfGKyaF+BfUGuOXEZ7cTZt3yPurl1g4/0h7N/ry67UqaG3QquP8d8FPAjxtjPmytvVZ4wBjzveRWQk0Cj+fvfpRcac0jxpgPFi3A1A/8an6b32vXzouIiLt1+sSnWZf5O/0+6uXWDj/SWq3s2e/lK1Ct0Kng/ijwReDfAU8ZY/4MuAHcS66MxgD/j7X2WQBrbdQY86b8875kjPkEsEKudeTR/P0n2/4uREREKujFy/yqS+497ejZ79UrUK3QqT7uWWPMK4G3AI+Qq2cPkwvjnwU+YK39QslzPm2MeSnwDuD1QD9wAXhbfnt1lBEREdfo1cv8vXjC0qva3bPfa1egWqFTI+5YazeB9+e/an3OPwCvbNEuiYiINFUvXubv1ROWXlTvImOn55Z0vHepY8FdRESkF/TiZf5eOWHppWNaqrhn/33jo1W3nRoOcWY+stWzv1d+Rq2g4C4iItIGvXaZv5tPWFo5GdMr1LO/MxTcRUREpGW67YSlHZMxvUA9+ztDwV1ERESkBu2ejOlm6tnfGQruIiLiWd1YhiHupcmYz1HP/s5QcBcREc9RjbG002I0yewzK/ztuZtcX0vwbQdGqm7fC5Mx1bO/MxTcRUTEU1RjLO1SfIJ46WaMKytxstby9etRhkN7uGMkxFBoz7bn9cpkTPXsbz8FdxGRKlSK4S6qMZZ2KT1BBLDWYrOWlY0UsWSaaGKTw/sGGN+7/f8JvTAZUz3720/BXUSkDJViuJNqjKUdyp0g3oylWE+l2cxY9gb9xJ0MkbjDxZsQ8PdtG3nvlcmYvdKz3y0U3EVESqgUw5204Iu0S7kTxKF+P0F/HxspBxuEgWAuQq0n01xfTdwS3HttMmY39+x3GwV3EZEiKsVwLy34Iu1Q6QQxHPAzHNpDLJkm4WQYCPoJB/p4diPFamKThJMmFMjFql6djNltPfvdqLuv34iI1Kl0pK00IBZKMcYGAlulGNIeWvBF2qHaCeIdIyH29vtJpTNspNJYIOjvI5XOEE2myWQtVyNxVjYcDo6HNRlTmk7BXUQkr3ikbWo4VHXbqeEQawlnqxRDWq+w4ItTYxB30ln8PtP1NcbSXNVOEIdCe7h73yCj4QCZrGVlwyG5mSHhZLgWSXBmPkJqM6vJmNIyKpUREclTKYa7acEXaYedVgTdtzdI0O/j2mqCtcQmkQ0HYwzhQB+HJwY1GVNaSsFdRCRPpRjupgVfpB1qOUEcCu1hKF/v/tX5FQ7eNsAPvuibmDk0ps+btJSCu4hI3k4jbaV6pd2bm2jBF2m1ek4QVxMO+4fDvOyeCV71rfvbuJdSq27rdKPgLiKSp1IM99OCL9IOOkH0vm5di0PBXUQkT6UY3tCqBV+6bWROGqcTRG/r5rU4FNxFRIpopM0bmrngS7eOzMnuaEVQb+r2tTgU3EVEimikzVt2u+BLN4/Mye5pRVDvKbfqbbHCWhzA1locXvr/uIK7iEgJjbT1hm4fmZPm0Yqg3lBp1dtypoZDnJmPbK3F4ZXjq+AuIlKGRtq6X7ePzIn0ml5Yi0PBXUSkCo20dadeGJkT6TW9sBaHgruIiNSkm64+9MLIXK/ops+l7E4vrMWh4C4iIlV1Y9eVXhiZ63bd+LmU3emFtTgU3EVEpKJu7brSCyNz3axbP5eyO72wFoeCu4iIlNXNXVd6YWSuW3Xz51J2r9vX4lBwFxGRsrq560ovjMx1q27+XHards5D6Pa1OBTcRURkm17ouuLlkblenZDZC5/LbtKpeQjdvBaHgruIiGzTC11XvDgy1+sTMnvhc9ktOj0PoVvX4lBwFxGRbXql64qXRuY6HYTcoFc+l17npnkI3bYWh4K7iIhs00tdV7wwMuemINRJvfS59DLNQ2gdBXcREdmmF7uuuHlkTkEopxc/l16jeQitpVNQERHZptB1ZTgUYGEtUXVbdV1preIgNDUcqrrt1HCItYSzFYS6jT6X7rebeQiyMwV3EREp6/j0JAfHw6xsOFsjnMUyWcvVSJyVDYeD42FXdV3pJgpCt9Ln0t00D6G1VCojIiJlebHrSjdSELqVPpfupnkIraXgLiIiFXmp60q3UhDaTp9L99I8hNZScBcRkaq80HWlmykIlafPpTtpVeLWUnAXEZGauLnrSjdTEKpOn0v38fKqxG7X8etoxpjvNsZ8yhizYIxJ5W+/YIx5ZZltHzDGfNYYs2KMiRtjnjTGvNUY09eJfRcREWkHTcgULynMQzi2f4jUZpYz8xEu3YxxNRLn0s0YZ+YjpDazmofQgI6OuBtj3gn8F2AZ+AywAIwD3wa8DPhs0bavAT4FJIGTwArw/cBvAS8GHm7jrouIiLSNJmSK12geQmt0LLgbYx4mF9q/CPyAtXa95PE9Rf89BHwEyAAvs9bO5u9/F3AKeMgY84i19hPt2n8REXmO6oxbT0FIvEbzEJqvI8HdGOMD3gPEgR8sDe0A1trNon8+BOwD/rgQ2vPbJPOj9n8D/CSg4C4i0kYXlmKcmlvk3I3YVpD053uJH719kOPTkwqSTaQgJF6keQjN06kR9weAu4BHgYgx5lXA88mVwXzZWvuPJdsfz99+rsxrPUbuBOABY0zQWpuq9o2NMU9UeGi61p0XERGYvbzCydl5Li/HiSacrdKNWCrD1Uic+ZU455dinJg5wMyhsU7vbldREBKdvPWmTgX3b8/fLgJfAb6l+EFjzGPAQ9bam/m7juZvny59IWtt2hjzDPDNwN3AUy3ZYxER2XJhKcbJ2XnOXo8yNhDgrvHRsl0jzl6PcnJ2npFwQCPvIk2gq1y9rVPBvTDd/c3AM8C/A/4ZOAj8BvDvgU+Sm6AKMJy/XavweoX7R3b6xtba+8vdnx+Jf+FOzxcRETg1t8iV5ThjA4Gy7Qn7fGbr/ivLcU7PLSlMiOySrnJJp4J7oX2jITeyfib/7381xryO3Mj6S40x31WmbKacwjCPrbqViIjs2mI0ybkbMdYSDveNj1bddmo4xJn5COcW11mMJnUpX6RBusol0Lk+7pH87aWi0A6AtTYBfD7/zxflbwsj6sOUN1SynYiItMjFpdwl+pFwoOoqnpAbeR8JB4hsOFxcirVpD0W6T+lVrtLfvcJVrrGBwNZVLuk+nQru5/K3qxUeLwT7UMn295RuaIzxk5vomgYuNWn/RESkglQ6SzprCfhr+xMS8PtIZy2pdLbFeybSnYqvck0Nh6puOzUcYi3hbF3lku7SqeD+GLmg/TxjTKDM48/P317O357K376izLYvAcLA4zt1lBERkd0L+n34fQanxiDupLP4fYZgjUFfRG6lq1xS0JH/i1prl8mtfjoM/FLxY8aY7yE3OXWN59o/PkpuddVHjDEzRdv2A7+a/+fvtXi3RUQEODwxyEg4wGrcIZOtPrUok7Wsxh1GBwIcVr2tSEN0lUsKOrZyKvA24DuAdxhjXgJ8mVxXmdeRWyH1TdbaVQBrbdQY8yZyAf5LxphPACvAq8m1inyU3ImAiEhb9HIP5cmhfo7ePsj8SpyFtUTZrjIFC2sJhkMBjk7u7Zmfj0izFa5yxVKZmrZ30lkGg35d5epCHQvu1tolY8x3AO8kF9a/E1gH/jfwX621/1Sy/aeNMS8F3gG8HugHLpA7AfiAtVYdZUSk5dRDOef49CTnl2KcvR4FcnW15TpcrGw4HNs/xIPTE5Vequf18kmg1KZwletqJE4ma6uWyxSuch0YC+sqVxfq5Ig71toVcsH7bTVu/w/AK1u6UyIiFaiH8nOOTAxyYuYAJ2fnubIc58x8ZOvn4aSzrMYdhkMBju0f4sTMgZ44mamXTgKlVrrKJQUdDe4iIl6hHsrbzRwaYyQc4PTcEnM31rfC52DQz4GxMEcn9/Lg9ETX/xwa0Y0ngbpy0Fq6yiWg4C4iUhOtFFrekYlBjkwMKrTVodtOAnXloD10lUtAwV1EZEdaKXRnk0P9PfNed6ubTgK78cqBm+kqlyi4i4jsYDc9lBVmpVg3nQR225UDr9BVrt6m4C4isgP1UJZm6aaTwG66cuBFusrVmxTcRUR20Gs9lDWS1zrdchLYTVcORLxEwV1EZAde76FcaxDXJMPW65aTwG66ciDiJQruIiI78GoP5XqCuCYZtofXTwILuuXKgYjXKLiLiNTAaz2U6wniI+GAJhm2iVdPAkt1y5UDEa9RcBcRqYGXeijX2+1jNBzQJMM28tpJYDndcuVAxGsU3EVEauSVHsr1dPs4fyNG1lpS6YwmGbaJl04CK+mWKwciXqPgLiJSB7f3UK6328czyzdJZ2H/cL8mGbaRV04Cq+mGKwciXqPgLiLSALf2UK6328dAwM/NmMNmxtb0+p2aZOjWE6XdcPtJ4E664cqBiNcouIuIdJFGun1AbvJgLdo9ybAXWlS69SSwFt1w5UDESxTcRUS6SL3dPvw+H4E+HxtO2nWTDNWi0hu8fuVAxEsU3EVEuki93T7iTpp9e4P0+YyrJhnW2xlHLSo7z8tXDkS8Qg1VRUS6SKHbx3AowMJaouq2hSD+wOHbeN7kICsbzlbgL5bJWq5G4qxsOBwcD7dlkmFpZ5zSE5BCZ5yxgcBWi0oRkW6n4C4i0mWOT09ycDxccxB/eOYAJ2YOcGz/EKnNLGfmI1y6GeNqJM6lmzHOzEdIbWbbNsmwuDPO1HCo6rZTwyHWEs5Wi0oRkW6mUhkRkS7TaLcPt0wyrLczjlpUikivUHAXEelCjXT7cMskw0Y643SiRaWISLspuIuIdKlGg3inJxnW2xmn3S0qRUQ6RcFdRMRjvBbE61VvZ5x2tqgUEekkBXcREY/ohcWI4LnOOPMrcVe1qBQR6TQFdxERD+i1xYiOT09yfinG2etRINc9plwf95UNh2P7h9rSolJEpNMU3EVEXK4XFyNqtDOOiEg3U3AXEXG50sWIShUWIwK2FiPyapAtrd9/6IV38uTVtY63qBQRcQMFdxERFytejOi+8dGq204NhzgzH9lajMhLNd871e8/PHMn2XzLx060qBQRcQMFdxERF+uFxYjqqd9/4Mh4p3dXRKRjFNxFRFys2xcj6sX6fRGRRmm1ChERFyssRuTUGMSddBa/z3hmMaLS+v3SqwqF+v2xgcBW/b6ISK/yxv/ZRUR6VGExotW4QyZrq25bWIxodCDgmsWIFqNJHr+wzOm5JR6/sMxiNHnLY4X6/anhUNXXmRoOsZZwtur3RUR6kUplRESofzXSdvHqYkS1LBa1FE12ff2+iEgzKbiLSE/zwmqkXluMqNbJps/bN9jV9fsiIs2m4C4iPcsrq5F6aTGieiabLkWTpNJZbPUKoC1OOstg0O+Z+n0RkWZTcBeRnuS1biYzh8YYCQc4Pbfk6sWI6lksai2eJmstqXSGTNZWLZcp1O8fGAu7pn5fRKTdFNxFpCd5cTXSIxODHJkYdG09fr2LRS1FIwT8fYQCfk/V74uIdIqCu4j0HK+vRjo51O+K/SjVyGJRBgju6WM5lgLcX78vItJJCu4i0nN6YTXSTmhksSifMbz48G2cvxlzff2+iEinKbiLSM/p9tVIO6WwWFQslalp+8Jk0+ffMczxeyddX78vItJprgnuxpg3AH+c/+ebrLW/X2abB4B3At8J9AMXgD8EPmitre0vhYj0vEYDprqZVFdYLOpqJF73ZNPJoX5X1++LiLiBK4K7MeYA8EEgBpQdUjHGvAb4FJAETgIrwPcDvwW8GHi4LTsrIp63m4AplTVjsSi31u+LiLhBx4ePjDEG+CjwLPChCtsMAR8BMsDLrLX/0Vr7fwMvAP4ReMgY80h79lhEvK4QMIdDARbWElW3VTeT+hyfnuTgeJiVDWfrxKhYJmu5GomzsuFwcDysyaYiInXoeHAHfgY4DvwosFFhm4eAfcAnrLWzhTuttUlypTMAP9nKnRSR7qKA2RqFxaKO7R8itZnlzHyESzdjXI3EuXQzxpn5CKnNrCabiog0oKOlMsaYe4FfB37bWvuYMeZ4hU0L93+uzGOPAXHgAWNM0Fqb2uF7PlHhoela9llEbuXVmmQvrUbqNV5ZLGq3vPrZFxHv6lhwN8b4gf8BfAP4xR02P5q/fbr0AWtt2hjzDPDNwN3AU83cTxEp78JSjFNzi5y7EdsKZv5868Sjtw9yfHrS9cGsVwJmJ7h9sajd6IbPvoh4UydH3H8J+Dbg31hrqxeZwnD+dq3C44X7R3b6ptba+8vdnx+Jf+FOzxcRmL28wsnZeS4vx4kmnK2R6lgqw9VInPmVOOeXYpyYOcDMobFO725VzQ6Y3RhUd6PbJpt202dfRLynI8HdGPMicqPsv2Gt/cdmvGT+1lbdSkR27cJSjJOz85y9HmVsIMBd46NlV7o8ez3Kydl5RsIBT4w+7jZgahS2+3XrZ19EvKPtwb2oROZp4F01Pq0woj5c4fGhku1EpEVOzS1yZTnO2ECgbLu/Pp/Zuv/KcpzTc0tdH140Ctsb9NkXkU7rRFeZQeAe4F4gaYyxhS/gl/PbfCR/3/vz/z6Xv72n9MXyJwJ3AWngUkv3XMTFFqNJHr+wzOm5JR6/sMxiNNmS73HuRoy1hMPUcKjqtlPDIdYSDucW11uyL25RPArbv8fHfQdGuXvfIHeOhrl73yD3HRgluMe3NQp7YSnW6V2WBuizLyJu0IlSmRTwBxUeeyG5uve/JxfWC2U0p4AfAl4B/GnJc14ChIHHduooI9KN2lmicXEp9z1GwoGqixZBbvRxJBwgsuFwcSnW1jrndtaZaxS2N3jlsy8i3a3twT0/EfXHyj1mjHk3ueD+R9ba3y966FHgPcAjxpgPFnq5G2P6gV/Nb/N7LdtpEZdqd4lGKp0lnbUE/LVdrAv4faSzllQ6u+vvXYt215kXj8LeNz5addup4RBn5iNbo7AKc97i9s++iPSGjvZxr5W1NmqMeRO5AP8lY8wngBXg1eRaRT4KnOzgLoq0XScmygX9Pvw+QyyVqWl7J51lMOgnWGPY2Y1O1JlrFLZ3uPmzLyK9wxPBHcBa+2ljzEuBdwCvB/qBC8DbgA9Ya9VRRjxnNyUdnSjRODwxyEg4sLXSaLWwmslaVuMOB8bCHG5xaUinun1oFLZ3uPWzLyK9xVXB3Vr7buDdVR7/B+CV7dofkVbZbUlHp0o0Jof6OXr7IPMrcRbWEmVPGAoW1hIMhwIcndzb8tHlTtWZaxS2d7j1sy8ivUV/PUTabPbyCh9+7CJ/fXaJr19bJZZKk7WWWCrN16+t8sWzS3z4sYvMXl6p+Bq7KdHYrePTkxwcD7Oy4WyNPhbLZC1XI3FWNhwOjod5cHpi19+zmk52+yiMwq7GnW0/h1KFUdjRgYBGYT3KbZ99Eek9rhpxF+l2tZZ0nJlfZSma5OXHbueu8YFtJTSdLNE4MjHIiZkDnJyd58pynDPzka16ciedZTXuMBwKcGz/ECdmDrS8g0on68w1Cttb3PbZF5Heo+Au0kY7lXRspNKsJ9OsxjdZiqaYX0lw1/jAthKaTpdozBwaYyQc4PTcEnM31rfKfQaDfg6MhTk6uZcHpyfaElw6XWd+fHqS80sxzl6PArlR/XInYysbDsf2D2kU1uPc9NkXkd6j4C7SJjvVpd9cT3HpZoz1ZBonk8FJZ4ml0kTizrauKG6YKHdkYpAjE4Nt7ZleTqdPYjQK23vc8tkXkd6j4C7SJtVKOqKJTS7djBGJOwT9fYz1B9lIpfH3mXwHlL23dEX5iZccdk2JxuRQf0fDihtOYjQK25s6/dkXkd6j4C7SJtVKOq6tJlhPpgn6+xgI5n4tfcZgLVthtLQriko0ctxSZ65RWBERaTUFd5E2qVTSEXfSrCU2cTJZxvoDW/dnba5FZHEYL27t+OoX7FeJRp6bTmI0CisiIq2i4C7SJpVKOqLJNKl0hoDfh8/k7rPWkkpnGAgGGep/7te0tCvKA0fGVaKB6swLNNovItLdFNxF2qRSSUc2a7EW+sxzI8RxJ0Ogr4+R0B5CgVt/TUu7oqhEI6eX68x3u6CXiIh4g4K7SBuVK+nw+QzGQDprsdYSdzKk0hlGwwH2j2xfUKhSVxSVaPTmSczs5RVOzs5zeTlONOFsXWmIpTLbuhHNHBrr9O6KiMguKLiLtFG5ko5wwE86Y4kl06Q20wT9fkbDAQ7vG2AotOeW52eyluX1JEF/mBvRJI9fWO7qUNqoXjmJqXVBr0I3olyHIo28i4h4lYK7SJuVK+lYS2zipLME/D7uGAmxfyS0LbRHE5ucXVhjPZHG+JL8+deuqxyix+20oFe5bkT6jIiIeJeCu0gHlJZ0XF7e4PNnF1lYSzDY799qCVmwuJbkXxfWWE/mersPBPrIWqtyiB6204JexYq7ES1Gkz1xNUJEpBspuIt0UKGk44Ej49xz+96yXVHW4ptcfnaDdNayN+jnm/cPMTn8XO27yiF6U7UFvUqVdiNScBcR8SYFdxGXqNQVJe7kWkXeFvRzbP/wthIalUP0pmoLepVT2o1IRES8R8FdxEVKS2huRJN8+qvXsFjuPzhWdWRV5RC9pdKCXpVU6kYkIiLeof+Di7hQoXzm9qF+9vT5GB8M1l0OId2tsKDXatwhk7VVt81kLatxh9GBAId1NUZExLMU3EVcTOUQUklhQa/hUICFtUTVbRfWEgyHAhyd3KsrMSIiHqbgLuJihXIIp8Yg7qSz+H1G5RA94vj0JAfHw6xsOFyNxLeNvGeylquROCsbDgfHwzw4PdGhPRURkWZQjbuIixXKIQqhrFq5TKEc4sBYWOUQHrKbVV7LLehV6EbkpLOsxh2GQwGO7R/ixMwBTVoWEfE4BXcRFyuUQ8yvxFlYS5RdZKdA5RDecmEpxqm5Rc7diG11EGpkQa1K3YgGg34OjIU5OrmXB6cnFNpFRLqAgruIyx2fnuT8Uoyz16NArntMuWXtVzYcju0fUjmEB8xeXuHk7DyXl+NEE87WKHmjC2qVdiNqZPReRETcT8FdpIlaEZy6sRyilwPmhaUYJ2fnOXs9ythAgLvGR8ueiDWyoFZhQS8REelOCu4iTdCssodKWlEO0Ynw3OqfkxecmlvkynKcsYFA2dInLaglIiKVKLiL7FKzyx4qaVY5RKPhebfft10/JzdbjCY5dyPGWsLhvvHRqttqQS0RESml4C6yC60se6hkN+UQjYTnZoySd+Ln5EYXl3I/w5FwoO4FtRTcRUREwV1kF7xU9tBIeF6NO00ZJffSz6mVtKCWiIjshoK7SIO8VvZQb3j+5Ow8K3Fn16PkXvs5tVJhQa1YKlPT9k46y2DQrwW1REQE0Mqp0oUWo0kev7DM6bklHr+wzGI02ZLvs5uyh3YrDs9Tw6Gq204Nh1hLODx+8VnOL8a2gn7peywE/bGBwNYoeTle+jm10mI0SWTDIbmZ4dpqglhys+r2hQW1RgcCWlBLREQAjbhLF2l3xxIvlT3UG57DAT8La0n8fYZ7JvdW3X6nUfJW/py80Fay9HO5sJYklkzzz8+ssH8kxB0jIYZCe7Y9TwtqiYhIKQV36Qqd6FjipbKHesNzOpvFyWQZDgV3PYmyFT8nr7SVLPe5HB3Yw3pyk7XEJsnNDKtxh+dNDDK+N/dz65UFtbxw0iUi4jYK7uJ5nepYcnhikJFwgKuROJmsrRpwC2UPB8bCHSl7aCQ8A00ZJW/2z8krbSWrfS5Hw0EuLK2zspEbgd9IpfmmsQH8fcaTC2rVwysnXSIibqTgLp7XqY4lk0P9HL19kPmVOAtribLfu6DTZQ/1hucNJ03A72NPX/XR9oJqo+TN/Dl5qa1ktc/lvr1Bgn4f11YTXF9N4KSzROIOd40PNLyglhd45aRLRMStFNzF0zrdseT49CTnl2KcvR7d+h7lgmSnyx7qDc/jA/1krWUjlW7KKHmtP6fFaJKp4X7CgT4ev7C8rXzCK20la/lcDoX2MBTaw4HRMF+dX2FqpJ8feOEdzBwa68qSES+ddImIuJWCu3hapxe0OTIxyImZA5ycnefKcpwz85GtUUQnnXVV2UO9Jxmj4QBf+8ZqU64m7PRzWowmyWQtPp8hlkzzhbOL28on9vb7PdNWsp7P5WC/nztGwvT7+xgNB7oytIN3TrokR3MQRNxJwV08zQ2dXWYOjTESDnB6bom5G+tbdbuDQb+ryh7qPckYCQeI5Pu4w+6vJlT6OaUzzx0LA/j7fGSt3VY+cWxqyDOrjrrhc+kmnb4yJrXTHAQRd1NwF09zS2eXIxODHJkYdP0oVb0nGc2+mlD6c7q8vMHnzy6ynkozOdRf8eTg7PUoC6sJUuks/Xv6anqvnQzDbvlcukWnr4xJbTQHQcT9FNzF09zW2WVyqN/1QaOek4zdXk2o9D0KX1+/vkbCyTA51L9j+cTNaIq0tdw2sPsJs63mts9lp+kKhPtpDoKINyi4i6d5qbOL29R6ktHI1YRaLrfXU7M+EgpwYWk91/EmlWZib5DB/u2LFhV0Ogzrc3krXYFwv1rnIKTSGf5lfo2PPHaJ17xgv+uuKop0u44Ed2PMbcDrgFcB3wLcATjAvwAfBT5qrd021GKMeQB4J/CdQD9wAfhD4IPW2tr+IkjX6URnF7eXxLRCrUG/1svttdSsRxObXFtNsJbYJOFkSWWy+Mh4YtVRr3QcagddgXC3WuYgFH4XV+MON9dTRBIO11YTWyepqn0XaY9Ojbg/DPwesACcBr4BTAI/APw+8L3GmIettbbwBGPMa4BPAUngJLACfD/wW8CL868pHtDs0NvOzi6auFVdPZfbd6pZv7me4tLNGOvJNE4mCxb25F/LC6uOeqnjUKvpCoS77TQHofR30eczOOksz26kuLmeVO27SBt1Krg/Dbwa+N/FI+vGmF8Evgy8nlyI/1T+/iHgI0AGeJm1djZ//7uAU8BDxphHrLWfaOu7kLq0MvS2o7OLJm7trJ6Wf9Vq1qOJTS7djBGJOwT9fYz1B9hIpfH3GW4f6mdlw/HEqqNe6TjUDroC4V7V5iCU+11MOBmMgYm9uatwqn0XaZ+OBHdr7akK998wxnwI+DXgZeSDO/AQsA/440Joz2+fNMa8E/gb4CcBBXeXakfobWVnF03c2lm9Lf+uR+Kks7AcS3HwtoFbfp7XVhOsJ9ME/X0MBP1Ya0mlMwwEg3zTWJip4ZBnVh31SsehVtMVCPeqNgeh9HcRIGtzgy59+S/13xdpHzdOTt3M36aL7juev/1cme0fA+LAA8aYoLU2Ve3FjTFPVHhouq69lJq1O/S2orOLFo/ZWb0t/8b39vNszMHfZ24pn4g7adYSmziZLGP9gfx9GQJ9fYyE9hAK+AmB51Yd9ULHoVbTFQh3qjQHodzvYvFJ9FD/cxFC/fdF2sNVwd0Y4wd+JP/P4pB+NH/7dOlzrLVpY8wzwDcDdwNPtXQnpW5eD71aPKY2jbT8Gx3YQ9Dfx8qGA+R+ftFkmlQ6Q8DvwwAbqdy/R8MB9o+EbnmNXll1tJvoCoT7VJqDUPy76DOFMH/rSXSB+u+LtIergjvw68Dzgc9aaz9fdP9w/natwvMK94/s9A2stfeXuz8/Ev/C2nZTatUNodfri8e0KyA10vJvqH8P/+bIOGdvRLfKJwASToZs1vJsOhcSRsMBDu8bKNtBRj2/vUlXINyl3ByEbNZiLfQZg7WWuJOpeBIN+l0UaQfXBHdjzM8AbwfmgDfU+/T8ra26lbSd10MveHfxmHZ3wGm05d8rv3WK775n31b5xKWbMYxxMD4YDQcYCe1hf4W2j6Ce3yLNUG4OgjGG1GaGzawlsZne8SRav4sireeK4G6MeQvw28BZ4N9aa1dKNimMqA9T3lDJduISXg29xby4eEwnOuDspuXf5BBb5ROzz6zwP7/8Da6sxHn+/qGmLrSk8gyRykrnICyuJYjEHVLJNGN7g4zlR9rLhXb13xdpj44Hd2PMW8n1Yv86udC+VGazc8AMcA9wy+TSfF38XeQms15q6c5K3bwYekt5bfGYTnbA2W3Lv8mhfl51336urSX44tklVhObVYN7rT2/1X9fpDalcxA+/bVrPHl1jaF+P4cn9lZ8nvrvi7RHR4O7MeYXyNW1fw34HmvtcoVNTwE/BLwC+NOSx14ChIHHduooI+3nhdC70yis1xaP6eRk4Ga1/Gtmz2/13xepX2EOwsRQPx9+7CJnr0e5Gomr/75Ih3UsuOcXT/oVciPoLy9THlPsUeA9wCPGmA8WLcDUD/xqfpvfa+X+SmPcHHrrGYX1yuIxbpgM3IyWf806AVD/fZHdUf99EXfpSHA3xryRXGjPAH8H/Iwx20ZiL1trPwZgrY0aY95ELsB/yRjzCWCF3OqrR/P3n2zP3ku93Bh66x2F9cofr2ZMBm5GHXgzWv414wTA661IRdxA/fdF3KNTI+535W/7gLdW2OZvgY8V/mGt/bQx5qXAO4DXA/3ABeBtwAesteoo41JuC72NjsJ64Y/XbiYDt6IOfLct/3ZzAuCGqw8i3UL990XcoSPB3Vr7buDdDTzvH4BXNnt/pPXcFHp3Mwrr9j9ejU4Gvry8wWe/vuDaOvBGTgC6oRWpiNuo/75IZ3W8q4z0DjeE3maNwrr1j1cjk4GHw3v4yjciXFre6Ko68G5oRSoiIlJMwV3arpOht9tHYRuZDJzJWBY3Ul1XB94NrUhFRESK6S+U3GIxmuTxC8ucnlvi8QvLLEaTnd6lpuqFUdjj05McHA+zsuFsjbwXy2QtVyNxVjYcJoaC9PkMawmHqeHtS5gXmxoOsZZwtq5AuF3h6sNq3Nn2MyhVuPowOhDQ4jEiIuJaGnEXoHcWqOmFUdh6JgMfmxri788vd+UVCDe3IhUREWmEgrv01AI1XlgQqhlqnQw8vxLnS+dudu0VCDe2IhUREWmUgnuP67UFanppFLaWycBL0WRXX4FwWytSERGR3VBw73G9uEBNr43CVpsM3AtXINzUilRERGQ3FNx7mNcXqGm0raRGYZ/TK1cg3NCKVEREZLcU3HuYV1ojloatPp/hzNXVXU2k1Sjsc3rpCoRb+++LiIjUQsG9hzWjNWIrRzDLdbqJJTdZ3nDI5ss6Jof6G55Iq1HYHF2BEBER8QYF9x62m9aIrW4fWa7TTTqb5RsrcaLJNEG/j7GBAEP9fsb35kJ2oxNpq43C9kqo1xUIERER91Nw72GNTkyMpdL82WMXW9Y+slKnm6cWooBhJLQHYwxriU0u3twg4O9jKLSnqRNpe6WvfTFdgRAREXE3Bfce1sjExNsGAvz1U4stbR9ZrtNN3EmzltjEyWQZGwjgM7nvuZ5Mc301wVBoz9bzdzuRthV97b0UhlUHLiIi4k4K7j2u3omJFlraPrJSp5toMk0qnSHg922F9nCgj2c3UqwmNkk4aUIB/9Y+NDqRttl97Xtx5F5ERERaQ8G9x9UzMfF77p3k8/+6WFP7yJFQgK8ur/Clp5fYP9LPzKGxmgJ0pU432azFWugzz91njCHo7yOVzhBNPhfcofEVPpvZ176XVqQVERGR1lNwl5onJi5Fkzu2j4wmNrm2mmAtsUksmeGphXV+/++e4dTczZpGmCt1uvH5DMZAOmtvvd8YrM2NhBdrZIXPZva177UVaUVERKT1FNwFqG1i4vxKvGr7yJvrKS7djLGeTONksmDBWkvcyfD1a6s1jTBX6nQz1O8n6O9jI+WQtXarXCZrc6UnpaG4kRU+m9nXvhdXpBUREZHWUnCXW1SbmFitfWQ0scmlmzEicYegv4+x/gAbqTT+PsMdoyHGB4M1jTBX6nQTDvgZDu0hlkyTcDIMBP1Ya0mlMwwEgwz1P/dRbnSFz2b0tQfvr0grIiIi7qTg3uWa2c2kWvvIa6sJ1pNpgv6+sqG61hHmap1u7hgJEU1sEok7QG40P9DXx0hoD6GAf8cVPnf6Weymr30xr6xIKyIiIt6i4N6lWtHNpFKovqVVY38gf1/mllBdUMsIc6VON0OhPdy9b5ALS+usbDik0lmG+v34jOHSzVjFFT5r/Vk02te+tBynWSP3IiIiIsUU3LtQK7uZlAvVxa0aDbCRyv17NBxg/0jolufXMsK8U6cbgOHQHnw+w/hAgMF+P36fKbvCZ70/i3r72pcrx2nWyL2IiIhIMQX3LtPqbiblQjVAwsmQzVqeTedG2kfDAQ7vG7hlYaSCWkaYq3a6OTTG0cm9fMudw2Tzr1Ou9KWRn0W9fe1Ly3Gg8RVp65lIKyIiIr1Hwb3LtKObSWmovnQzhjEOxgej4QAjoT3sHwmVDe1Q+whzLZ1uqmnkZ/Gml9xdc1/74nKcYo2sSFvvRFoRERHpPQruXaSd3UyKQ/XsMyv8zy9/gysrcZ6/f4jB/vKBHRobYa7W6aaS3fwsau1rX+2Epxkj9yIiIiLFFNy7SCu7mVQa9Z4c6udV9+3n2lqCL55dYjWxWTW4t2uEebc/i92O9tezIm2lkXsRERGRYgruXaQV3Uxq7cjithHmZv0sGhntL2jGyL2IiIhIgYJ7F2l2N5N6O7K4aYTZLZ1ddjtyLyIiIlKg4N5FmtnNpJGOLG4aYXZbZ5fdjNyLiIiIgIJ7V2lmN5NGu9O4ZYRZnV1ERESk2yi4d5lm1Jo3ozuNG0aY3VZ3LyIiIrIbCu5dphndTFrZnaad1NlFREREuomCu4fUWn6y21rzVnSn6RQ31d2LiIiI7IaCewfVGsRracm4t9+/7bXe9JK7G6o1d0tHlmZxS929iIiIyG4ouHdArb3RYeeWjE/fWOczTy4wli9rKfdaDxwZr2v/3NaRpVncUHcvIiIi0igF9zarpTf6k1fXuP/gKME+H58/u8jCWoLJof5tLRkX15L868Ia68k0/j7DXbcNMBTaU7HPeq3UkUVERETEfRTc22in3uiRDYdzi1GeXlzniSsR+nyGWDJNwO8jHPAz1J9mKLQHgGhik8vPbuCkswT6cqUtPvNci8ZyfdbrqeNWRxYRERERd1Fwb6NqvdFvrqe4dDNGLJnByWTZTGQxQMZC1ma5FkkQTWxyeN8A43v7ubaaYD2ZJujvIxzo49mNFKuJTRJOmlDAX7HPeq3UkUVERETEXRTc26Rab/RoYpNLN2NE4g5Bfx8Te4PcXE+SsYaBQB9DoT3EnQyRuMPFm5C1sJbYxMlkGesPYIwh6O8jlc4QTeaCe0GlPuu1UEcWEREREfdQcG+Tar3Ri0fPB4K5Q+Lv85HczJKxFmPM1v3ryTRXnt0glc4Q8Pvwmdxr+YzB2lwJS7Hd9llvZ0cWdX0RERERqcxTwd0YcyfwK8ArgNuABeDTwH+21kY6uGs7qtQbPe6kbxk9LygE8uIcXiiJWU+BtdBnnjsByNpcN5lyHWCa0We9lR1Z6umyIyIiItKrPBPcjTGHgceBCeDPgTngRcB/Al5hjHmxtfbZDu5iVZV6o0eT6W2j55AL7j4D6UyWrLX4jNkqiUlnsoDB5s8BrLWk0hkGgkGG+rcf0nJ91t0yul1Ll51GOuOIiEh3ccvfLZFO8kxwB/5fcqH9Z6y1HyzcaYz5TeBngV8D3tyhfdtRpd7o2azdNnpurSWdzRLa48cYSDiZrVIZnzHg82EMJDdzoT7hZAj09TES2nNLfTts77PuptHtnbrs7LYzjoiIeJ+b/m6JdJongrsx5m7g5cBl4HdLHv5l4MeBNxhj3m6t3Wjz7tWkUm90n89gDKSLamLi+SA+Phgglc4SiTsAhAJ9uZKYPkN4j59M1iGy4WAMjIYD7B8Jbfu+xX3W51firhrdrtZlB9h1ZxwREfE2XZUVuZUngjtwPH/7BWvtLYXa1tp1Y8w/kAv23wn8TbUXMsY8UeGh6V3v5Q7K9UYf6vcT9PexkXLIZLMkN7Ok0hlGwwHu3jdIKp3l0s0Y68k0KxspnHSWvf172NNvcPJ183uDfg7dFt7q8Q7b+6wfnhh01eh2tS47pXbTGUdERLxJV2VFtvNKcD+av326wuPnyQX3e9ghuHdSpd7oYMlmLUvrSQYCexgNBzi8b2AriAf9Pq6tJri+msBgGAz62T8SYnK4n8iGQ9bmOtNsOJmKfda/8o2Iq0a3q3XZKbdvu+mMIyIi3qOrsiLbeSW4D+dv1yo8Xrh/ZKcXstbeX+7+/Ej8C+veszqV642etUGSTpbEZobBYB/3TO5ldOC5DjMDQT97+/2MhPcwNdzPy4/dzl3jAxyeGGQ9md6xz/refj9/+uV5V41uV+qyU0kzOuOIiIg36KqsSHleCe47KQzZ2qpbuUS53uiXlzf4yjciLEZTPLMcIxLfvkrpfQdGttXxTQ6xY5/1xy8su250u1KXnUrKdcYREZHupKuyIuV5JbgXRtSHKzw+VLKdJ5T2Rv/upX0Nr1Jarc+6G0e3K3XZKae0M46IiHQ3N/7dEnEDrwT3c/nbeyo8/rz8baUaeE9o1SqlbhzdrtRlp5zizjgaSRER6X5u/Lsl4gZeCe6n87cvN8b4ijvLGGP2Ai8GEsA/dWLnmq3Zq5S6dXS7XJedch0DCp1xHpyeaOn+iIiIO7j175ZIp3ni1NRaexH4AnAIeEvJw/8ZGAD+2K093DutMLo9HAqwsJaoum07R7cLXXaO7R8itZnlzHyESzdjXI3EuXQzxpn5CKnN7FZnHHULEBHpDW79uyXSaV4ZcQf4v4DHgQ8YY/4t8BTwHcCD5Epk3tHBfXM9t45ul+uyU09tv4iIdCe3/t0S6STPBHdr7UVjzAzwK8ArgFcCC8AHgP9srV3p5P65XaUe8pX6vrczKLeqtl9ERLzLzX+3RDrFM8EdwFo7D/xop/fDq9w+ut3s2n4REfE2t//dEmk3TwV32T2NbouIiJfo75bIcxTce5RGt0VExEv0d0vEI11lRERERER6nYK7iIiIiIgHKLiLiIiIiHiAgruIiIiIiAcouIuIiIiIeICCu4iIiIiIByi4i4iIiIh4gIK7iIiIiIgHKLiLiIiIiHiAgruIiIiIiAcYa22n98EVjDHPhkKhsXvvvbfTuyIiIiIiXeqpp54ikUisWGtvq/e5Cu55xphngCHgcou+xXT+dq5Fry/uoWPdO3Sse4eOde/Qse4dnTrWh4Cotfauep+o4N4mxpgnAKy193d6X6S1dKx7h45179Cx7h061r3Di8daNe4iIiIiIh6g4C4iIiIi4gEK7iIiIiIiHqDgLiIiIiLiAQruIiIiIiIeoK4yIiIiIiIeoBF3EREREREPUHAXEREREfEABXcREREREQ9QcBcRERER8QAFdxERERERD1BwFxERERHxAAV3EREREREPUHBvMWPMncaYPzTGXDfGpIwxl40x7zfGjHZ636Q+xpjbjDE/Zoz5M2PMBWNMwhizZoz5e2PMfzTGlP19MsY8YIz5rDFmxRgTN8Y8aYx5qzGmr93vQRpnjHmDMcbmv36swjY61h5mjPluY8ynjDEL+f9fLxhjvmCMeWWZbXWsPcgY86r8Mb2a/3/4JWPMJ40x31Vhex1nFzPGPGSM+aAx5u+MMdH8/58/vsNz6j6mxpg3GmO+bIyJ5f/uf8kY833Nf0c70wJMLWSMOQw8DkwAfw7MAS8CHgTOAS+21j7buT2Uehhj3gz8HrAAnAa+AUwCPwAMA58CHrZFv1TGmNfk708CJ4EV4PuBo8Cj1tqH2/kepDHGmAPAvwB9wCDwJmvt75dso2PtYcaYdwL/BVgGPkPu93wc+DbgtLX254u21bH2IGPMe4CfB54FPk3uWB8BXg34gR+x1n68aHsdZ5czxnwNuA+IAVeBaeBPrLU/XGH7uo+pMeZ9wNvzr/8oEAAeAcaAn7bW/k5z39UOrLX6atEX8HnA5g9s8f2/mb//Q53eR33VdTyPk/sF95Xcfzu5EG+B1xfdPwQsASlgpuj+fnIndBZ4pNPvS187HncDfBG4CLw3f9x+rGQbHWsPfwEP54/RXwN7yzy+R8fa21/5/09ngBvARMljD+aP2yUdZ2995Y/d8/L/n35Z/rh8vMK2dR9T4IH8/ReA0aL7D5E7AUwCh9r5nlUq0yLGmLuBlwOXgd8tefiXgQ3gDcaYgTbvmjTIWnvKWvuX1tpsyf03gA/l//myooceAvYBn7DWzhZtnwTemf/nT7Zuj6VJfobcSduPkvu9LUfH2qPyJW7vAeLAD1pr10u3sdZuFv1Tx9qbDpIrD/5na+1S8QPW2tPAOrnjWqDj7AHW2tPW2vM2n6Z30MgxfXP+9testZGi51wml+2C5P42tI2Ce+scz99+oUzQWwf+AQgD39nuHZOWKPxhTxfdV/gMfK7M9o+RCwoPGGOCrdwxaZwx5l7g14HfttY+VmVTHWvvegC4C/gsEMnXQP+CMeY/Vah71rH2pvOAA7zIGDNe/IAx5iXAXnJX1gp0nLtPI8e02nP+qmSbtlBwb52j+dunKzx+Pn97Txv2RVrIGOMHfiT/z+Jf7oqfAWttGniGXF3l3S3dQWlI/rj+D3JlUL+4w+Y61t717fnbReAr5Orbfx14P/C4MeZvjTHFI7E61h5krV0BfoHcvKSzxpj/boz5r8aY/wV8gVyZ1E8UPUXHufvUdUzzFRF3ADFr7UKZ1+tIjvO385v1mOH87VqFxwv3j7R+V6TFfh14PvBZa+3ni+7XZ8DbfoncxMR/Y61N7LCtjrV3TeRv30zuD/e/A/6ZXGnFbwD/Hvgkz5XB6Vh7lLX2/caYy8AfAm8qeugC8LGSEhod5+5T7zF15WdAI+6dY/K3auvjYcaYnyE323wOeEO9T8/f6jPgMsaYF5EbZf8Na+0/NuMl87c61u5TaAFngIestX9jrY1Za/8VeB25ThIvrdQusAwda5cyxvw8ua4gHwMOAwPA/cAl4E+MMf+tnpfL3+o4d49Gj2lbPwMK7q1TOBMbrvD4UMl24jHGmLcAvw2cBR7MX4otps+ABxWVyDwNvKvGp+lYe1dhwtkla+2Z4gfyV1oKV9FelL/VsfYgY8zLyE1C/gtr7dustZestXFr7VfInaBdA96ebywBOs7dqN5jutP2O43It4SCe+ucy99Wqn16Xv62Ug28uJgx5q3A7wBfJxfab5TZrOJnIB8O7yI3mfVSi3ZTGjNI7pjdCySLFl2y5DpCAXwkf9/78//WsfauwrFbrfB4IdiHSrbXsfaWwmI5p0sfsNbGgS+Ty0Tflr9bx7n71HVMrbUb5E7oBo0xU2VeryM5TsG9dQr/c3h56Yqaxpi9wIuBBPBP7d4x2R1jzC8AvwV8jVxoX6qw6an87SvKPPYScl2FHrfWppq+k7IbKeAPKnx9Nb/N3+f/XSij0bH2rsfI/bF+njEmUObx5+dvL+dvday9qdApZF+Fxwv3O/lbHefu08gxrfac7y3Zpj061TS/F77QAkxd90WudMICs8DYDtsOATfRAh5d8wW8m8oLMOlYe/QL+Hj+GP1qyf3fA2TJjcaP6Fh79wv4D/ljcwO4o+Sx780f5wRwm46zN7+obQGmuo4pLlyAyeR3QFrAGHOY3IdhAvhz4CngO8it9PU08IC19tnO7aHUwxjzRnKTmjLABylf13bZWvuxoue8ltxkqCTwCXLLK7+a/PLKwH+w+iX0DGPMu8mVy7zJWvv7JY+9Fh1rTzLGTJBbW+MI8HfkyiYOkqt9tuQWZvpk0favRcfaU/JXvj9PrmvQOvBn5EL8veTKaAzwVmvtbxc957XoOLta/hi9Nv/P28l1gbpE7vcYYNla+3Ml29d1TI0xvwG8jdxE9UeBAHACuI3cwOzvNP+dVdHpM6Ru/wIOAB8FFshdgrtCbkJj1dFafbnvi+dGW6t9fanM815MfnEXciM6/wL8LNDX6fekr4Y/Az9W4XEda49+AWPkroY+k/9/9bPkBly+U8e6O76APcBbyZWoRsmVSC2R693/ch1n733V8Hf5cjOOKfBG4P8jt3r2OvC3wPd14j1rxF1ERERExAM0OVVERERExAMU3EVEREREPEDBXURERETEAxTcRUREREQ8QMFdRERERMQDFNxFRERERDxAwV1ERERExAMU3EVEREREPEDBXURERETEAxTcRUREREQ8QMFdRERERMQDFNxFRERERDxAwV1ERERExAMU3EVEREREPEDBXURERETEAxTcRUREREQ8QMFdRERERMQD/n+3JkmEXhzg/AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 248, "width": 375 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "### This is an example of heteroscedasticity\n", "np.random.seed(1)\n", "X = np.arange(1, 101)\n", "y = X + np.random.normal(loc = 0, scale = X/2, size = 100)\n", "plt.scatter(X, y, alpha = .6)" ] }, { "cell_type": "markdown", "id": "c008611b", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Check-in\n", "\n", "Why might heteroscedasticity pose a problem for our measures of **prediction error**, e.g., $S_{Y|X}$?" ] }, { "cell_type": "code", "execution_count": 8, "id": "003a3163", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "### Your answer here" ] }, { "cell_type": "markdown", "id": "8dec5e2c", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Heteroscedasticity and prediction error\n", "\n", "> The **standard error of the estimate** gives us an estimate of how much prediction error to expect.\n", "\n", "But with heteroscedasticity, our *error* is itself correlated with $X$. \n", "\n", "- Less error for *small* values of $X$.\n", "- More error for *large* values of $X$." ] }, { "cell_type": "code", "execution_count": 12, "id": "0d43b5a0", "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu4AAAHwCAYAAAD5Keq8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAABYlAAAWJQFJUiTwAAB7PUlEQVR4nO39e3xcZ3nvf3/u0WhGGp1lWbIcOz4mVpwEh0Q5OUc7gQIpEE47aYGyeQqUPmy6KXSXZ+9Cy27Lb0Pb3dLSPj1QCmW3FLdhk5aUQkjs4ICBoIQ4JI4dH2JHPkmWdRzNaEYzc//+WDOyzpqR5rDWzPf9es1rrFlrRvdojaxr3eu6r8tYaxEREREREXfzlXoAIiIiIiKyNAXuIiIiIiIeoMBdRERERMQDFLiLiIiIiHiAAncREREREQ9Q4C4iIiIi4gEK3EVEREREPECBu4iIiIiIByhwFxERERHxAAXuIiIiIiIeoMBdRERERMQDFLiLiIiIiHiAv9QDcAtjzMtAI3CyxEMRERERkfK1ERi11m7K9YkK3C9prK2tbb3qqqtaSz0QERERESlPL774ItFodFnPVeB+ycmrrrqq9emnny71OERERESkTN1www0888wzJ5fzXOW4i4iIiIh4gAJ3EREREREPUOAuIiIiIuIBCtxFRERERDxAgbuIiIiIiAcocBcRERER8QAF7iIiIiIiHqDAXURERETEAxS4i4iIiIh4gAJ3EREREREP8Jd6ACIiIiLiLn2jExzvDxNLpAj6fWxpr6ejsabUw6p4CtxFREREBIBj/WH2Hu7jyPkww5E4iZTF7zM0hwJsW1PP7q4OtrbXl3qYFUuBu4iIiIjQc3KQPT29nByIMBqN0xwKEPD7CMeSnB6K0DsY4Wh/mAe619O9sbXUw61ICtxFREREKtyx/jB7eno5dHaU1roAm9paqPKZqe3JlOXcSJRDZ0fZ09NLcyigmfcSUOAuIiJSoZTHLBl7D/dxaiBCa12AdS2hOdurfGbq8VMDEfYd7lfgXgIK3EVERCqM8phlur7RCY6cDzMSjbOjrWXRfTubajnYO8SRvjH6Rid0oldkCtxFREQqiPKYZbbj/c4JXHMoMCM9Zj5V6RO8ofE4x/vDCtyLTIG7iIhIhVAes8wnlkiRSFkC/uza+wT8PhIpSyyRKvDIZDY1YBIREakQs/OYZ8+uZvKYW+sCU3nMUv6Cfh9+nyGeZSAeT6Tw+wzBLAN9yR/9xEVERCrA9DzmzqbaRfftbKplJBqfymOW8ralvZ7mUIDhSJxkyi66bzJlGY7EaakLsEVXY4pOgbuIiEgFWEkes5S3jsYatq2pp6k2wLmR6KL7nhuJ0lQbYFtHg/LbS0CBu4iISAVQHrMsZndXBxvaQgyOxzk9FJkz855MWU4PRRgcj7OhLcSurvYSjbSyaXGqiIhIBcjkMYdjyaz2jydS1Af9ymOuEFvb63mgez17eno5NRDhYO/QVMWheCLFcCROU22A7WsbeaB7vRYtl4gCdxERkQqQyWPOzKYuli6TyWNe3xpSHnOZm92E6+3Xr+O50yMcPj82VeO/PuhnfWuIbR0N7OpqV9BeQgrcRUREKkAmj7l3MMK5kei83TEzlMdc/pZqwvWO7nWk0qlS6qrrHgrcRUREKsTurg6O9oc5dHYUcKrHzFfHfXA8zva1jcpjLlO5NOHaubWt1MOVaRS4i4iIVAjlMYuacHlbXlacGGPeboz5vDHmSWPMqDHGGmP+IYfnfzH9HGuM2brIfu8xxjxljAkbY0aMMU8YY34+H+9BRESkEnRvbOVX7tzCa7Z3cM1lzdQH/fiMoT7o59p1zbxmewe/cucWuje2lnqoUgBqwuVt+Zpx/wSwAwgDp4GubJ9ojHkj8P9JP3fBUzpjzB8BH0u//heAAPAg8E1jzIettX++7NGLiIhUkK3t9Wxtr5+zMFF5zOVtehOuHW0ti+7b2VTLwd6hqSZc+ly4Q74C91/HCaiPAXcB+7J5kjFmNU4QvgdYk37ufPvtxAnajwM3WmuH0o//IfA08EfGmEestSdX9jZEREQqR0djjQKyCrKSJlz6nLhDXlJlrLX7rLVHrbWL98md62/S9x9aYr8Ppu8/nQna09/3JPAXQBB4b47fW0RERKRiqAmX95Vscaox5j8D9wNvsdZeNGbRM7/d6ftvz7PtP4BPpvf5nSy+79MLbMo6vUdERETEa9SEy/tKciSMMRuAPwX+wVr78BL71gGXAWFr7bl5djmavr8yr4MUERERKSOZJlzDkTjJ1OJJEpkmXC11ATXhcpGiz7gbY3zA3+MsRv21LJ7SlL4fWWB75vHmbL6/tfaGBcb1NHB9Nq8hIiIi4jVqwuV9pZhx/3WcRajvn56vnge55teLiIiIVJTdXR1saAsxOB7n9FBkzsx7MmU5PRRhcDzOhraQmnC5TFFn3I0xVwCfBr5krf1Wlk/LzKg3LbB9qRl5EREREUFNuLyu2KkyV5OuAGOMWagKzNH0QtW3WGsfttaOG2POAJcZYzrnyXO/In3/UmGGLCIiIlI+uje20hwKsO9wP4fPjzEciZNIWeqDfta3htjW0cCurnYF7S5U7MD9JPDFBbbdh1PL/V+A0fS+GXuBdwOvA74063mvn7aPiIiIiCxBTbi8qaiBu7X2WeB9820zxjyBE7j/D2vtsVmb/woncP8tY8zD0xowbcSpAR9jbkAvIiIiIotQEy5vyUvgboy5H6cmOzjBN8Ctxpgvp/89YK39jeW+vrX2gDHmj4GPAs8ZYx4CAsADQCvwYXVNFREREZFsePVKQ75m3K8D3jPrsc3pG8ApYNmBO4C19mPGmOeA/wJ8AEgBzwB/aK19ZCWvLSIiIiLl71h/mL2H+zhyPjyV2+/3GZpDAbatqWd3V4erc/vzErhbaz8FfGqFr3F3Fvv8PU4NeBERERGRrPWcHGRPTy8nByKMRuNT1XTCsSSnhyL0DkY42h/mge71dG9sLfVw51X0BkwiIiIiIsV0rD/Mnp5eDp0dpbUuwKa2Fqp8Zmp7MmU5NxLl0NlR9vT00hwKuHLmvRQNmEREREREimbv4T5ODURorQuwriU0I2gHqPIZ1rWEaK0LcGogwr7D/SUa6eIUuIuIiIhI2eobneDI+TAj0TidTbWL7tvZVMtINM6RvjH6RieKNMLsKXAXERERkbJ1vN9ZiNocCsyZaZ+tKr1QdWg8zvH+cJFGmD0F7iIiIiJStmKJFImUJeDPLuwN+H0kUpZYIlXgkeVOgbuIiIiIlK2g34ffZ4hnGYjHEyn8PkMwy0C/mNw3IhERERGRPNnSXk9zKMBwJE4yZRfdN5myDEfitNQF2KKqMiIiIiIixdPRWMO2NfU01QY4NxJddN9zI1GaagNs62hwZSdVBe4iIiIiUtZ2d3WwoS3E4Hic00OROTPvyZTl9FCEwfE4G9pC7OpqL9FIF6cGTCIiIiJS1ra21/NA93r29PRyaiDCwd6hqc6p8USK4UicptoA29c28kD3elc2XwIF7iIiIiJSAbo3ttIcCrDvcD+Hz48xHImTSFnqg37Wt4bY1tHArq521wbtoMBdRERERCrE1vZ6trbX0zc6wfH+MLFEiqDfx5b2elfmtM+mwF1EREREKkpHY40nAvXZtDhVRERERMQDFLiLiIiIiHiAAncREREREQ9Q4C4iIiIi4gEK3EVEREREPECBu4iIiIiIByhwFxERERHxAAXuIiIiIiIeoMBdRERERMQDFLiLiIiIiHiAAncREREREQ9Q4C4iIiIi4gEK3EVEREREPECBu4iIiIiIByhwFxERERHxAAXuIiIiIiIeoMBdRERERMQDFLiLiIiIiHiAAncREREREQ9Q4C4iIiIi4gEK3EVEREREPECBu4iIiIiIByhwFxERERHxAAXuIiIiIiIeoMBdRERERMQD/KUegIiIiBRW3+gEx/vDxBIpgn4fW9rr6WisKfWwRCRHeQncjTFvB+4CrgN2AA3AP1pr3zXPvlcAbwV+DrgC6ACGgB8Bn7PW7lvk+7wH+BCwHUgCPwX+yFr7SD7eh4iISDk51h9m7+E+jpwPMxyJk0hZ/D5DcyjAtjX17O7qYGt7famHKSJZyteM+ydwAvYwcBroWmTf3wMeAA4B3wIGgW3Am4A3GWP+q7X2z2Y/yRjzR8DH0q//BSAAPAh80xjzYWvtn+fpvYiIiHhez8lB9vT0cnIgwmg0TnMoQMDvIxxLcnooQu9ghKP9YR7oXk/3xtZSD1dEspCvwP3XcQLqYzgz7wvOmgPfBj5rrf3p9AeNMXcB3wX+0BjzL9bac9O27cQJ2o8DN1prh9KP/yHwNPBHxphHrLUn8/R+REREPOtYf5g9Pb0cOjtKa12ATW0tVPnM1PZkynJuJMqhs6Ps6emlORTQzLuIB+Rlcaq1dp+19qi11max75dnB+3px78HPIEzk75z1uYPpu8/nQna0885CfwFEATeu7zRi4iIlJe9h/s4NRChtS7AupbQjKAdoMpnWNcSorUuwKmBCPsO95dopCKSC7dVlZlM3ydmPb47ff/teZ7zH7P2WZQx5un5biye3iMiIuIJfaMTHDkfZiQap7OpdtF9O5tqGYnGOdI3Rt/oRJFGKCLL5ZrA3RizAbgHiAD7pz1eB1wGhKenz0xzNH1/ZcEHKSIi4nLH+52FqM2hwJyZ9tmq0gtVh8bjHO8PF2mEIrJcrigHaYwJAv+Ik/Lym9PTYYCm9P3IAk/PPN6czfey1t6wwBieBq7P5jVERETcKpZIkUhZAv7s5uYCfh+JlCWWSBV4ZCKyUiWfcTfGVAH/B7gN2AP80TJfasn8ehERkXIX9Pvw+wzxLAPxeCKF32cIZhnoi0jplPS3NB20/wPwDuCfgXfNs8A1M6PexPyWmpEXERGpGFva62kOBRiOxEmmFp/TSqYsw5E4LXUBtqiqjIjrlSxwN8b4gX/CqcX+VeAXrbWzF6VirR0HzgD1xpjOeV7qivT9S4Uaq4iIiFd0NNawbU09TbUBzo1EF9333EiUptoA2zoa1ElVxANKErgbYwLAQzgz7V8B3m2tTS7ylL3p+9fNs+31s/YRERGpaLu7OtjQFmJwPM7pocicmfdkynJ6KMLgeJwNbSF2dbWXaKQikouiB+7phajfAN4MfBF4r7V2qUS8v0rf/5YxpmXaa20EPgTEgC/lf7QiIiLes7W9nge617N9bSOxyRQHe4c4cSHM6aEIJy6EOdg7RGwyxfa1jTzQvV7Nl0Q8Ii9VZYwx9wP3p79ck76/1Rjz5fS/B6y1v5H+918BbwAGcFJgftuYOeWqnrDWPpH5wlp7wBjzx8BHgeeMMQ/hNGp6AGgFPqyuqSIiIpd0b2ylORRg3+F+Dp8fYzgSJ5Gy1Af9rG8Nsa2jgV1d7QrapWT6Ric43h8mlkgR9PvY0l6vlK0l5Ksc5HXAe2Y9tjl9AzgFZAL3Ten7NuC3F3nNJ6Z/Ya39mDHmOeC/AB8AUsAzwB9aax9Z7sBFRETK1db2era21ytAElc51h9m7+E+jpwPT51Q+tM9BbatqWd3V4dOKBeQl8DdWvsp4FNZ7nv3Cr7P3wN/v9zni4iIVKKOxhoF6uIKPScH2dPTy8mBCKNRp1FYwO8jHEtyeihC72CEo/1hHuheT/fG1lIP13Vc0YBJRERERMrbsf4we3p6OXR2lNa6AJvaWmZ0902mLOdGohw6O8qenl6aQwHNvM+ibgsiIiIiUnB7D/dxaiBCa12AdS2hGUE7QJXPsK4lRGtdgFMDEfYd7i/RSN1LgbuIiIiIFFTf6ARHzocZicbpbKpddN/OplpGonGO9I3RNzpRpBF6gwJ3ERERESmo4/3OQtTmUGDOTPtsVemFqkPjcY73h4s0Qm9Q4C4iIiIiBRVLpEikLAF/dqFnwO8jkbLEEku1+qksCtxFREREpKCCfh9+nyGeZSAeT6Tw+wzBLAP9SqGfhoiIiIgU1Jb2eppDAYYjcZIpu+i+yZRlOBKnpS7AFlWVmUGBu4iIiIgUVEdjDdvW1NNUG+DcSHTRfc+NRGmqDbCto0H9B2ZR4C4iIiIiBbe7q4MNbSEGx+OcHorMmXlPpiynhyIMjsfZ0BZiV1d7iUbqXmrAJCIiIoJTsvB4f5hYIkXQ72NLe71mfPNoa3s9D3SvZ09PL6cGIhzsHZrqnBpPpBiOxGmqDbB9bSMPdK9X86V5KHAXERGRspRtIH6sP8zew30cOe+ULEykLP50ScJta+rZ3dWhIDJPuje20hwKsO9wP4fPj039vOuDfta3htjW0cCurnb9vBegwF1ERETKSi6BeM/JQfb09HJyIMJoND41AxyOJTk9FKF3MMLR/jAPdK+ne2Nrid9ZedjaXs/W9npd4VgGBe4iIiJSNnIJxJtDAfb09HLo7CitdQE2tbXMaA6UTFnOjUQ5dHaUPT29NIcCmgnOo47GGgXqOVLgLiIiImXhWH84p0C8JRTg1ECE1roA61pCc16vymemHj81EGHf4X4F7lJSCtxFRESkLOw93Jd1IH70fJiUtcQSSXa0tSz6up1NtRzsHeJI3xh9oxOaJZaSUTlIERER8by+0QmOnA8zEo3T2VS76L6dTbUMjE/QH45RF/TPmJWfT1U6P35oPM7x/nA+hy2SEwXuIiIi4nnH+52FqM2hQFaBeF3ATzyRYjK5eBfPjIDfRyJliSVS+RiuyLIocBcRERHPiyVSJFKWgD+70CazXzzLQDyeSOH3GYJZvr5IIejTJyIiIp4X9Pvw+0zWgbjf5yNQ5WM8npjTwXO2ZMoyHInTUhdgixanSgkpcBcRERHP29JeT3MowHAknlUgHoknWN0QpK0+yLmR6KL7nxuJ0lQbYFtHgxamSkmpqoyIiIgUXb6b73Q01rBtTT29gxHOjUTnrSqTkQnEX315M4OROIfOjgLOotX5ykcOjsfZvraRXV3tyx6fSD4ocBcREZGiyaWraa52d3VwtD+cdSD+ju71DEfi7Onp5dRAhIO9Q1MNm+KJFMOROE21AbavbeSB7vWq4S4lp8BdREREiiKXrqbdG1tzfv2t7fU80L0+50C8ORRg3+F+Dp8fmzqZqA/6Wd8aYltHA7u62hW0iysocBcREZGCy7WraXMosKxguXtja86B+Nb2era21+c9fUck3xS4i4iIlAk3B565dDU9NRBh3+H+Zc9yLzcQ72iscc3PS2Q+CtxFREQ8rpB54/kwvavpjraWRfftbKrlYO8QR/rG6BudWPGC1UoLxN188iYrp8BdRETEwwqdN54PuXY1bQ4FGBqPc7w/rKAzS24/eZP8UOAuIiLiUcXKG1+p5XQ1TaQssSybKVU6L5y8SX4ocBcREfGoYuaNr0Smq2k4lsxq/3giRX3QTzDLQL+SeeXkTfJDvxEiIiIeND1vvLOpdtF9O5tqGYnGp/LGiy3XrqbDkTgtdQG2KMBc0uyTt9mpSJmTt9a6wNTJm3iXAncREREPWkneeLFlupo21QY4NxJddN9MV9NtHQ3Kb1+Cl07eJD8UuIuIiHiQ1/LGd3d1sKEtxOB4nNNDkTkz78mU5fRQhMHxOBvaQuzqai/JOL3ESydvkh/KcRcREfEgr+WNL7erqSzMaydvsnIK3EVERDwokzeemb1ebMY1kze+vjVU0rzx5XQ1lYV57eRNVk6Bu4iIiAdl8sZ7ByOcG4nOW1Umw01548vtaloO8v2evXjyJiujwF1ERCSPihmQ7u7q4Gh/mENnRwFnAeJ8pQAHx+NsX9voqrzxSupqWqjmSF49eZPlU+AuIiKSB6XoXKm8cfcrdHOkUpy8VeLVErdQ4C4iIrJCpexcqbxx9ypGc6RinryV4uQ0W5VyMqHAXUREZAXc0LmykvPG3axYnW2LcfJWzJPTXD7Hbj6ZKIS8BO7GmLcDdwHXATuABuAfrbXvWuQ5O4FPALcANcAx4O+Az1tr510ebYx5D/AhYDuQBH4K/JG19pF8vA8REZFcFSs4y0Yl5Y273fTmSDvaWhbdt7OploO9Q1PNkZZzDAt58lask9Ncg/BSXukqlXzNuH8CJ2APA6eBrsV2Nsa8Gfg6MAHsAQaBNwJ/AtwGvGOe5/wR8LH0638BCAAPAt80xnzYWvvneXovIiIiWSl2cCbesZLmSCv5bBTi5K0YJ6e5BuFuuNJVCvkK3H8dJ6A+hjPzvm+hHY0xjTiBdxK421rbk378k8Be4O3GmAettV+b9pydOEH7ceBGa+1Q+vE/BJ4G/sgY84i19mSe3o+IiMiSShWcifuVS3OkYpycLicId9OVrmLKSwV+a+0+a+1Ra61dem/eDqwGvpYJ2tOvMYEzcw/wq7Oe88H0/aczQXv6OSeBvwCCwHuXOXwRkYrUNzrBgWMD7Dvcz4FjA/SNTpR6SJ5TLsGZ5F+mOVI8y2MdT6Tw+4zrmiOt5OQ0W7OD8NnfJxOEt9YFODUQ4d+ePTN1MtHZVLvoa3c21TISjU+dTHhdKRan7k7ff3uebfuBCLDTGBO01sayeM5/AJ9M7/M7S31zY8zTC2xaNL1HRKRcVNpirkJS50pZSLk0Ryr0yelyZvSf7R0mZVn+la5EAvzerM9SilFvS9+/NHuDtTZhjHkZuBrYDLxojKkDLgPC1tpz87ze0fT9lYUYrIhIOanExVyFVC7BmeRfuTRHKvTJ6XJm9Eeik1igqbY6q+8R8PtIJFP4X/gZ/NtPIRiED30oq+e6TSkC96b0/cgC2zOPNy9z/0VZa2+Y7/H0TPz12byGiIgXVepirkIql+BMCsPLnW0zCn1yupwZ/ehkEgM5pSF1xka5/Ltfhab0715/P7S77+e9FDdeq8t8IrLJl58u1/1FRCpKrnmk+w73l2ik3rK7q4MNbSEGx+NTwc10yZTl9FCEwfE4G9pCrgzOpDAyzZG2r20kNpniYO8QJy6EOT0U4cSFMAd7h4hNplzd2TZzctpUG+DcSHTRfZdzcrqctQCNQT9NtdUMR+Jzft9my5xM+DvXELrx1c6DPh8cPbro89yqFDPumRnypgW2N87ab6n9l5qRFxGpeCpbWDjF7Fwp3lMOnW0LeeVgOTP6165rprOphh+fGJx5pctaWvtOs+W5H3Nm63bObt4+42Si8br74Ln1sGsXtHozFbAUgfsRoBsnJ33GQlFjjB/YBCSAEwDW2nFjzBngMmNM5zx57lek7+fkzIuIiENlCwurHIIzKRyvd7Yt5MnpctPNdnW1c350YsbJxNYXn2bHk98CIDg+ylMtG2eeTLTXwxVXLPj6XlCKwH0v8E7gdcA/zdp2JxAC9k+rKJN5zrvTz/nSrOe8fto+IiIyD5UtLDyvB2dSeF7ubFvIk9PlzOjPdzLR37CezZMpSCbh2HFqr+ln+5bLy+pKVykC94eAzwIPGmM+P60BUw3w++l9/nLWc/4KJ3D/LWPMw9MaMG0EPgTEmBvQi4hImsoWFo+XgzORxRTq5DTnGf3kGOz5d7rvv5/mO7fMOJk4vvVVVGE5272TG6/aWnZXuvISuBtj7gfuT3+5Jn1/qzHmy+l/D1hrfwPAWjtqjHk/TgD/hDHma8Ag8CacUpEPAXumv7619oAx5o+BjwLPGWMeAgLAA0Ar8GF1TRURWZjKFopIvhTi5DTrGf3v/ivs3+88qbOTrXfeOfNk4uYPEqyu4o1leqUrXzPu1wHvmfXY5vQN4BTwG5kN1tqHjTF3Ab8FvA2oAY7hBOZ/Nl8HVmvtx4wxzwH/BfgAkAKeAf7QWvtInt6HiEhZUtlCEXG7rGb0OzsvPeGxx+COO8CYirnSlZfA3Vr7KeBTOT7nB8AbcnzO3wN/n8tzRETEUQ41pUVkeby09qKjsYaO1AScPAnXXTdz486d8M1vOotM7723FMMrKW/2exURkZypbKFI5TnWH2bv4T6OnA9PpZ/405Wjtq2pZ3dXh7t+1+Nx+Id/gJ/8BKqq4DOfgfpp46upgf/n/4Ha2tKNsYQUuIuIVBCVLRRxp0LMiPecHGRPTy8nByKMRuNTJ+rhWJLTQxF6ByMc7Q/zQPd6uje6pK55dTWcPw+plHPbvx/eMCtBo0KDdlDgLiJScVS2UMQ9CjUjfqw/zJ6eXg6dHaW1LsCmtpZ5U+MOnR1lT08vzaFA8U/Yo1HnNr0ZkjFwzz3wd38HW7fChg3FHZPLKXAXEalQlbKYS8StCjkjvvdwH6cGIrTWBeZdjF7lM1OPnxqIsO9wf/EC96EhePRR+MEPYPt2+OAHZ26/4QZYs0ZB+zwUuIuIiIgUWSFnxPtGJzhyPsxINM6OtpZF9+1squVg7xBH+sboG50ozsl8NAp7030zn30WBgagre3Sdr9fQfsC1FlDREREpMhmz4jP7q2QmRFvrQtMzYhn63i/k3bTHAos2rMh832aQwGGxuMc7w8v670sKpFwctWnW7vWmWkHZ2Z9dDT/37dMacZdREREpIgKPSMeS6RIpCyBLDsfB/w+EilLLJFaeudsjY3B974HTzwB73rX3LKOb34zvOY1cNVVTl67ZEUz7iIiIiJFlMuMeCyRxBjD0b4x/u3ZM/SNTiz5+kG/D7/PEM8yEI8nUvh9hmCWgX5WHnvMqbc+NgaPPz53+8aNzqy7gvacaMZdREREJI+WqtiUzYz4aHSSM8NRRqKTjETiWOCR585x+Hx4yWozW9rraQ4FOD0UIZmyi54cJFOW4Uic9a0htuRzcerddzsLUFMpuHABxsehri5/r1+hFLiLiIiI5EG2pR0zM+LhWHLe17kwFuPEhTBjEwniyRQp67xOPJni+TPDS1ab6WisYduaenoHI5wbic5bVSbj3EiUptoA2zoacl+YGovBgQNOs6Rf/3WnBntGSwvcdx90dMD11zvNlGTFFLiLiIiIrFAupR0XmxEfjU5y4kKYoUicoL+KlmA1Q+m0mm0dDQT8VVlVm9nd1cHR/jCHzjoLPzubauetWjM4Hmf72kZ2dbXn9oathT/4Azh92vn6qafgtttm7vPzP5/ba8qSlOMuIiIisgLTSzvWVPvYsb6FzavrWdcSYvPqenasbyFY7ZsKtscmEmxbU09TbYBzI9EZr3VmOMrYRIKgv4q6oJ+JyRSBqiqaa6upDfizrjaztb2eB7rXs31tI7HJFAd7hzhxIczpoQgnLoQ52DtEbDLF9rWNPNC9Pvca7sbAzTdf+vrAgVx/bLIMmnEXERERWYHlNDuab0Y8lkgyEp0knkzREqxmPJYglkjSEgqwtrl2xmtmU22me2MrzaEA+w73c/j82FT6Tn3Qz/rWENs6GtjV1b540J5MwjPPwMgI3HvvzG233+7MtN9+O9x6a44/NVkOBe4iIiIiy7Tc0o5vum4tD3SvZ09PL6cGIhzsHcIYw0gkTspahiJxAlVVtIQCbFldR2Nt9YzXml1/faH89K3t9Wxtr19ywey8hobgM5+B4WEIBGDnTghNOzEJheATn8jmxyR5osBdREREZJlW0uxo59a2GTPix/rHsDC1oLW5tpq1zbVzgvaMXOqvdzTW5L74tLnZqQQzPAzxOHz/+/Da1+b2GpJXCtxFRERElmmlzY6mz4j/27NneOS5c8STKbZ1NFAbWDxMiydS1Af9K6+/bi0cOuRUglm79tLjxsA998DDD8NddykdxgUUuIuIiEhFWVbayAKWKu0420LBdkdjDW+67jIOnw/z/JlhAv7Fyyfmrf76Sy/BV78K587BjTfC+943c/vNNzs3v0JGN9BREBERkYqQbZ31XOSz2VHR6q9PV1vrBO0ATz8Nb3ubM/OeoYDdVVQOUkRERMpez8lB/nr/cb57qJ/nzwwTjiVIWUs4luD5M8M8dqifv95/nJ6Tgzm9bibYnq+042zZBNu7uzrY0BZicDw+dTIwXTJlOT0UYXA8zoa2UG7113t7nbSY6davhyuvhGDQ6XbqU2joZjqNEhEREdfIZxpLxvQ66611ATa1tczbjGippkYLyWezo0z99enVZjLNnOKJFMOROE21gdzqrz/3HHznO3DsGHz4w3DNNTO3v/vd0NDgzL6LqylwFxERWUQhAkmZqxBpLBnLqbOey/fKd7Cdl/rr0x054gTtAI89Njdwb8+xa6qUjAJ3ERGReRQykJSZek4Osqenl5MDEUaj8amgNxxLcnooQu9ghKP9YR7oXk/3xtacXnu5ddYXamq0kHwH28uuvx6LOWkv0+3eDY8/7lSJaWx0mipVLb74VdxJgbuIiMgshQwkZaZCp7GspM56rldWVtTsaAFZ1V+3Fo4edWbTT52CT3965qLSVavgve+Fbduc2uziWQrcRUREpil0ICkzFTqNZaV11pdjWc2OViKVgi9+0WmUBNDTA7fcMnOfm28u3nikYLR0WEREKkrf6AQHjg2w73A/B44N0Dc6MWP77EBy9ixtJpBsrQtMBZKyPNPTWDqbFl8Y2dlUy0g0PpXGkq1MnfV4loF4PJHC7zMrb2pUTFVVTkWYjN7ekg1FCksz7iIiUhGyyVlvqPEXJR9aHMVIY8lnnfWSO30a9u51KsC85S0zt915pzPjfvfd0NlZitFJEShwFxGRspdtzvr2zsai5UNLcdJYStLUqBBOnIDPftb5d00NvP71zn1GXR38wi+UZmxSNArcRUSkrOWSs35uOEoskaKmOruKG/nIh65kmTSWcCyZ1f7xRIr6oD/nNJZ81lkvmU2bYM0aOH8eJibg4EHlrVcgBe4iIlLWcln8eGE0RsJaVtUtPtuesdxAUhzFSmMpSFOjQrl4EZ54Am66yelqmmEMvOY1cOgQ3HsvbN5csiFK6ShwFxGRspVrDe+zQxESKRgIx9iwqs7b+dAeUMw0lrw3NSqEffvgn//ZqRIzOuqUcJzu9tudm1QsBe4iIlK2cl382NZQw8VwHH+V8XY+tIcUM42lEHXW82rTJidoB/jJT+Ctb4WmptKOSVxFgbuIiJSt5Sx+bKmrJuivYnA8Dng0H9pDSpHGUvQ667ONjzu11u+800mBydi4EbZsgepqJx2msbFkQxR3UuAuIiJlazmLHxtrqrl9axuHzo+6Px+6THgijSVfvv51JyVmchLa2+Gqq2Zu/8hHIBAoydDE/RS4i4hI2Vru4sc3vKqTO65cXRmBpEu4Po0lXyYnnRvA44/PDdwVtMsiFLiLiLhQ2QcvRbKSxY8djVRGIOkyJU9jyZfJSejrg3XrZj6+e7dTNWbdOujuLsnQxLsUuIuIuEg23T01y7u06cF2SyhAR2OQEwPjQO4566UMJHXS4EETE/Dtb8P+/c7s+ac/DVXT+gK0t8MnPwlr187MbxfJggJ3ERGXyLa75wPd6+ne2Frq4brSQic+iZSlygfDkUn6Rydcn7OuEzgPq6qC73/fWYA6Pg4//encmfXLLivN2MTzFLiLiLhALt099/T00hwKKHCbZbETn+FInEBVFcZ3acbdrTnrOoHzkFTKSYkJBi89Vl0Nd90FjzwCq1aVbmxlSFegFLiLiLhCLt09Tw1E2He43xVBpltke+IzOB6nvsbPXVeupq0+6Lo//jqB84ho1JlV37fPmU1/61tnbr/rLieHfccO8Kmr7krpCtQlJf00GWPuM8Y8aow5bYyJGmNOGGP+xRhz6wL77zTGfMsYM2iMiRhjnjPGfMQYUzXf/iIiXjC9u2dnU+2i+3Y21TISjXOkb4y+0YkijdD9Zp/4zK4ekznxaa0L0D8aYzgyya6udnZubXNN0A65vY/MCZyUwEsvwUMPwcWL8OSTEIvN3N7YCK9+tYL2POg5Ochf7z/Odw/18/yZYcKxBClrCccSPH9mmMcO9fPX+4/Tc3Kw1EMtipJ9oowxnwUeAa4Hvg38KfAM8GbgB8aYd83a/83AfuBO4BvAXwAB4E+ArxVv5CIi+ZVrd8/mUICh8TjH+8NFGqG7eeXEp290ggPHBth3uJ8DxwbmfH+vvI+KY+3cx171Kli92vm3MXD2bHHHVCGmX4GqqfaxY30Lm1fXs64lxObV9exY30Kw2jd1BepYBfyfWJJUGWPMGuA3gD7gVdba/mnbdgF7gd8F/iH9WCPwBSAJ3G2t7Uk//sn0vm83xjxorVUALyKes5zunomUJZZIFXhk3rCSE59izLZne5nf7e9juTybl5xIwFNPwd698N73zlxQagzcf79TQebmm528dsk7pRDOVaoc9w04s/0/nh60A1hr9xljxoDV0x5+e/rrr2SC9vS+E8aYTwCPA7+KZt5FxIOW092zPugnmGWgX+7cfOKTy0JTN7+P5fB8XvJXvwo/+IHz78cfh1/6pZnbVYO9oKZfgdrR1rLovp1NtRzsHZq6AuWJE8NlKlXgfhSIAzcZY9qstQOZDcaYO4EG4OFp++9O3397ntfaD0SAncaYoLU2Ns8+U4wxTy+wqSvLsYuI5NVyu3tucXPQU0RuPfHJdaHpTRtbXfk+lqMsKuPcdtulwP3ZZ+EXfkEz60VUrlegVqokgbu1dtAY83Hgj4FDxpiHgYvAFuBNwHeBX5n2lG3p+5fmea2EMeZl4GpgM/BiAYcuIpJ3K+nuKe498cn1Mn9nY40r30euPFUZx1r42c/g+eedwHx6Q6TNm+G665z7229X0F5k5XYFKl9KVg7SWvs5Y8xJ4O+A90/bdAz48qwUmqb0/cgCL5d5vDmL73vDfI+nZ+KvX+r5IiKFsLurg6P9YQ6dHQVy7+5Zydx44rOcy/xnRyZY21xD72DANe9jOTyTl5xKOV1NT592vr7xRrjiikvbjYFf/dXij0sA915JK7VSVpX5TeAh4Ms4M+11wA3ACeAfjTF/kMvLpe/nWfotIuJ+W9vreaB7PdvXNhKbTHGwd4gTF8KcHopw4kKYg71DxCZTruru6Sa7uzrY0BZicDw+NWM9XTJlOT0UYXA8zoa2UMFPfJZ7mf/y1pCr3keuPFUZx+dzZtMzHn+8+GOQBWWupA1H4nN+D2bLXIFqqQu47gpUvpWqqszdwGeBb1hrPzpt0zPGmLfgpMR8zBjzV9baE1yaUW9ifo3p+4Vm5EVEXK97YyvNoQD7Dvdz+PzY1II+N3b3dJvMic+enl5ODUQ42Ds0lVcdT6QYjsRpqg0U7cRnuZf52+qDrnofuXJlXrK1cOIERCJw7bUzt+3eDT09TirMrl2F+f6yLG68kuYGpUqV+fn0/b7ZG6y1EWPMU8BbgFfjzMAfAbqBK4EZi0uNMX5gE5BI7ysi4llb2+vZ2l7v3RJ6JeSmE5+VXOZ30/vIlevykvv74YtfhJMnYdUquPrqmU2ROjvhD/5A+esupRTCuUoVuAfT96sX2J55PJ6+3wu8E3gd8E+z9r0TCAH7l6ooIyLiFR2NNQrUl8EtJz4rXTDrlveRK9flJTc3w4ULzr8vXoSDB52OptMpaM+bfH9e3XYlzQ1KFbg/CfwX4APGmL+21p7JbDDGvB64DZgADqQffggnteZBY8znpzVgqgF+P73PXxZr8CIi4m6lPvHJ12X+Ur+PXJW0ws+5c1BfDw0Nlx4LBODOO+G733UaJXV2rvz7yByFrNnv5StQhVCqwP0h4DHgXuBFY8w3gPPAVThpNAb4/1lrLwJYa0eNMe9PP+8JY8zXgEGc0pHb0o/vKfq7EBERWUAlXuYvSV7yyy/DN78JL7wAb3gDvPnNl7ZZC/feC/fcMzOgl7wpRs1+r16BKoRS1XFPGWPeAHwIeBAnnz2EE4x/C/gza+2js57zsDHmLuC3gLcBNTilIz+a3l8VZURExDUq9TJ/0U9YhoacoB1g/34nePdPC2/qy+Pn6kbFrtnvtStQhVDKOu6TwOfSt2yf8wPgDQUakoiISF5V4mX+gp6wjI9DXd3Mx667zll4OjgIW7Y4+zQ1zWymJAXhmZr9ZaRkgbuIiEglqMTL/Hk/YTl1yqmz/vTT8MlPwpo1l7b5fPCe90BrK6xeqOZFYVTSMZ1tOU3GMjX7K+VnVAgK3EVERIqg0i7z5/WE5d//3akIA04A/853zty+bVt+Bp2lQi7G9ApX1uyvAArcRUREpGByPmGxdm6ayz33XArcL16cf58iKcZiTC9wXc3+CqHAXUREREqvvx/27oXz5+EjH5m57cor4XWvg+uvhw0bSjI8KP5iTDdzXc3+CqHAXUREPKuSc4zLysQE/O7vwuSk8/WJE7B586XtxsBb3lKasU2jxZiXlLRmfwVT4C4iIp6jHOMyU1MDN94IB9J9F59+embgXmJ9oxP0vDzI945c4OxIlFevb150/0pYjFmSmv2iwF1ERLxFOcYeNjYG3/setLXBLbfM3HbPPTA66jRM6uoqzfhmmX6CeOJCmFODEVLW8vzZUZpqq7msuZbG2uo5z6uUxZiV2GSs1BS4i4gsQqkY7qIcYw87fBg+/3lIJKC9HW6+eeYC03Xr4MMfLt34Zpl9gghgrcWmLIPjMcITCUajk2xZXUdbw9z/EyphMWalNhkrJQXuIiLzUCqGOynH2MM2bYLqaidw7+93up1ec02pRzWv+U4QL4RjjMUSTCYtDUE/kXiSoUic4xcg4K+aM/NeKYsxK7HJWCkpcBcRmUWpGO6khi8eEYs5uerd3dDQcOnxYBDuuANeeslJh7nqqtKNcQnznSA21vgJ+qsYj8WxQagLOiHU2ESCs8PRGYF7pS3GrMQmY6WiwF1EZBqlYriXGr54wPe+B9/4BkSjEInAfffN3P7mN4Pf3aHHQieIoYCfptpqwhMJovEkdUE/oUAVF8djDEcnicYT1Aac91apizErrclYKZT39RsRkRzNnmmbHSBmUjFa6wJTqRhSHGr44gGhkBO0AzzxhJMWM53Lg3ZY/ATxsuZaGmr8xBJJxmMJLBD0VxFLJBmdSJBMWU4PRRgcj7OhLaTFmJJ3CtxFRNKmz7R1NtUuum9nUy0j0fhUKoYUXqbhSzzLQDyeSOH3mbLPMS6JZNJJeZnt+uuhudlZfHrffU6HU49Z7ASxsbaazavraQkFSKYsg+NxJiaTRONJzgxFOdg7RGwypcWYUjDuP/UVESkSpWK4mxq+uIC18OijTofTkRH4vd+D1asvba+qgv/232DVqpkVYzxkqY6gqxuCBP0+zgxHGYlOMjQexxhDKFDFlvZ6LcaUglLgLiKSplQMd1PDFxcwxplpHx52vt63D/7Tf5q5T1tb0YeVT9mcIDbWVtOYznf/ae8gG1bV8Ys3XU73xlZ93qSgdP1QRCRNqRjut7urgw1tIQbH41OB1XTKMc4jayEcnvv4Pfc4942N0Fp+VZUyJ4hNtQHOjUQX3Xc4GmdtU4i7r2znvletVdDuQn2jExw4NsC+w/0cODbg+dRGzbiLiKQpFcP91PClCCYn4Uc/gscfh/p6+I3fmLn9qqvgV34FXvUqTyw2XQ51BPW+cu3FUZ6/cSIiy6BUDG8oVMMX1aBOGx+Hr34VUukrT6dOwYYNl7Yb4yxCLWM6QfS2cu7FocBdRGQazbR5Qz4bvpTrzFzWrJ25kLS5GW68EX78Y6dp0vnzMwP3CqGOoN5U7r04FLiLiEyjmTZvWWnDl3KemVtUKgXPPuukw9xyi9PRdLrXvhYuvxxuuw1qFy+NWs7UEdR75ut6O12mFwcw1YvDS/+PK3AXEZlFM22Vodxn5hb15JNOOgw4qTG33z5z1n3dOucmgDqCesVCXW/n09lUy8HeoaleHF45vgrcRUTmoZm28lfuM3OLuukm+PrXIRaD/n44dw7Wri31qERWpBJ6cShwFxFZhGbaylMlzMxhLRw96tRaf9e7oK7u0rbaWnjNa5yUmbvucvLaRTyuEnpxKHAXEZGslNPVh0qYmeNLX3IWmIKzuPR1r5u5/Y1vLP6YCqCcPpeyMkt1vZ0tnkhRH/R7qheHAncREVlUOVZdqYSZOa666lLg/sQTzoJTn3cClKWU4+dSVqYSenEocBcRkQWVa9WVspqZO30ajh93Ul6mu/FGeOQR2L7d6XZaRkF7uX4uZWUqoReHAncREZlXOVddKYuZuclJ+PM/h8OHnYow11wDq1Zd2u73w+/9XlkF7FDen0tZuXLvxVFev80iIpI3s6uuzA5uM1VXWusCU1VXvCIzM9dUG+DcSHTRfV07M1ddfenf1jrpMLOVWdAO5f25LFd9oxMcODbAvsP9HDg2QN/oRMG+V6YXx/a1jcQmUxzsHeLEhTCnhyKcuBDmYO8QscmUZ3txaMZdRETmqISqK56ambt40SndmC7ZmFmQ6d98HZf/5DlCt9xI4w03lG58RVIJn8tyUqp1COXci0OBu4iIzFEJVVc80SX3wgX4xjfgmWdg2zaOvfP9MwOhZIjG295FYHUb215JsjsU9mQwkq1K+FyWi1KvQyjXXhwK3EVEZI6KqLqCB2bmqqrgpz8Fa7nwk4N8LXSAg7ZhRiDU7w8xfGa4IhZkVsrn0uvctA6h3HpxKHAXEZE5yqrqyhJcMzM3Pg7BoLOoNKO1Fa6/npEnf8iB4GqOnh+lZl1TxS7IrKTPpZdVdFfiAlPgLiIic5RF1ZUclWxmrq8PHnsMfvhDeOc74dZbZ25/05v4Zut2/u2Cj2C1r6IDoUr8XHqN1iEUlk5BRURkjrKouuIVP/0p7N/vlHd87DGnQsw0fbVN/DRZz0g0TmdT7aIv1dlUy0g0PhUIlRt9Lt1vJesQZGkK3EVEZF67uzrY0BZicDw+NcM5XTJlOT0UYXA8zoa2kOfqIZfErKAcgDvuuFTa0RgIzwxgFAjNpM+lu2kdQmEpVUZERObliaorXjE87NRZf+op+OQnoXbazHldHTzwAHR0wBVXOMH7NAqEZtLn0t20DqGwFLiLiMiCXF91xSv+/M+ht9f59w9+APfeO3P7HXcs+FQFQnPpc+leWodQWArcRURkUa6puuJld98N/+f/OP8+eHBu4L4IBULz0+fSnTLrEHoHI5wbic67mDpD6xByp8BdRESyUm71kPMuGoXvfx9GR+Ftb5u57eabnYB9507YsSOnl1UgtDh9Lt3HU12JPabk19GMMXcYY75ujDlnjIml7x81xrxhnn13GmO+ZYwZNMZEjDHPGWM+YoypKsXYRUREACeH/eMfh4cecirDDA/P3F5dDR/6ELz61eDL/U+vFmSKl2TWIWxf20hsMsXB3iFOXAhzeijCiQthDvYOEZtMaR3CMpR0xt0Y8wng94AB4BHgHNAGvBq4G/jWtH3fDHwdmAD2AIPAG4E/AW4D3lHEoYuIiFzS3AyXXw5Hj0IqBU8+CW98Y95eXgsyxWu0DqEwSha4G2PegRO0Pwa81Vo7Nmt79bR/NwJfAJLA3dbanvTjnwT2Am83xjxorf1ascYvIiKXVEyecSIBP/kJtLfDli0zt91zj9P99J57nNSYPFMgJF6jdQj5V5LA3RjjAz4LRIBfnB20A1hrJ6d9+XZgNfCVTNCe3mciPWv/OPCrgAJ3EZEiOtYfZu/hPo6cD08Fkv50LfFta+rZ3dVRPoHkCy/Al74EY2Nw9dXwa782c/t11zk3s3it9ZVQICRepHUI+VOqGfedwCbgIWDIGHMfcA1OGsxT1tofztp/d/r+2/O81n6cE4CdxpigtTa22Dc2xjy9wKaubAcvIiLQc3KQPT29nByIMBqNT6VuhGNJTg9F6B2McLQ/zAPd6+ne2Frq4a5cR8el5kgvvADnzkFn56XtBQzY5wxFgVDF08lbZSpV4H5j+r4PeAa4dvpGY8x+4O3W2gvph7al71+a/ULW2oQx5mXgamAz8GJBRiwiIlOO9YfZ09PLobOjtNYF2NTWMm/ViENnR9nT00tzKOCdmXdr4fnnYft2qJpW+6CtzakIc+oU7NoFTU2lG6NUrIq6yiVzlCpwzyx3/yDwMnAv8GNgA/C/gZ8D/gVngSpA5n/HkQVeL/N481Lf2Fp7w3yPp2fir1/q+SIiAnsP93FqIEJrXWDe8oRVPjP1+KmBCPsO93sjmPjRj+Df/x36++GXfxluumnm9ne9C0KhmQG9SJFU3FUumaNU5SAz/+MZnJn1x621YWvtC8BbgNPAXcaYW7N8vcw0j110LxERWbG+0QmOnA8zEo3T2VS76L6dTbWMROMc6Rujb3SiSCNcgYsXnaAdnLKOdtaflYYGBe1SEtOvctVU+9ixvoXNq+tZ1xJi8+p6dqxvIVjtm7rKdaw/XOohSwGUKnAfSt+fsNYenL7BWhsFvpP+MjPVkZlRX+i6ZOOs/UREpECO9zuX6JtDgUW7eIIz894cCjA0Hue4mwIJa2FoaO7jd94Jfj/U1sK2bZBMFn9sIvOYfZVr9u9e5ipXa11g6iqXlJ9SpcocSd8PL7A9879pZirnCNANXAnMWFxqjPHjLHRNACfyOkoREZkjlkiRSFkC/uzmfgJ+H4mUJZZIFXhkWUiloKcHHn8c+vrgM5+BmmkL+hoa4MMfhk2bIBgs3ThFppl+lWtHW8ui+3Y21XKwd2jqKpcWrJaXUs2478cJtK8wxgTm2X5N+v5k+n5v+v518+x7JxACDixVUUZERFYu6Pfh9xniWQbi8UQKv88QzDLQLyhj4JFH4ORJiEbhh7OLmAFdXQraxVXK4iqX5EVJ/he11g7gdD9tAn57+jZjzGtwFqeOcKn840M43VUfNMZ0T9u3Bvj99Jd/WeBhi4gIsKW9nuZQgOFInGRq8aVFyZRlOBKnpS7AllIsTk3NOrkwBnanKwz7/ZfKO4q4mKevcklelaxzKvBR4Gbgt4wxdwJP4VSVeQtOh9T3W2uHAay1o8aY9+ME8E8YY74GDAJvwikV+RDOiYCISFFUcg3ljsYatq2pp3cwwrmR6LxVZTLOjURpqg2wraOheD8fa+HQIScdprkZfumXZm6/9VaIROCOO5zUGBGXy1zlCseyW3MRT6SoD/rdcZVL8qpkgbu1tt8YczPwCZxg/RZgDPh34H9Za380a/+HjTF3Ab8FvA2oAY7hnAD8mbWzl/6LiOSfaig7dnd1cLQ/zKGzo4CTVztfHffB8Tjb1zayq6t9oZfKv1degT/7M+fffj/cfz80Nl7aHgzCG95QvPEsoZJPAiU7matcp4ciJFN20XSZzFWu9a2h0lzlkoIq5Yw71tpBnMD7o1nu/wPAPf/bikhFUQ3lS7a21/NA93r29PRyaiDCwd6hqZ9HPJFiOBKnqTbA9rWNPNC9vrgnMxs2OItLX37ZqQpz5AjceOPSzysynQRKtlx/lUuKpqSBu4iIV5R1p9Bl6t7YSnMowL7D/Rw+PzYVfNYH/axvDbGto4FdXe2F+zmcOuWkw9x+O1x55cxtP/dzcPSo0+F09erCfP8VKMeTQF05KCxXX+WSolHgLiKShbLtFLpCW9vr2dpeX/yg7dFH4etfd/4djc4N3F/9aufmQuV2EqgrB8Xh6qtcUjQK3EVElqAaykvraKwp7nvdseNS4P6zn8HgILR6Y2a6nE4Cy/HKgZuV/CqXlJwCdxGRJaykhnKlBO4F09/v1Fp/4xvBN61CRkcHXHeds9D0nns8E7SX00lguV058IqSXeUSV1DgLiKyBNVQLpGvfAUOHHDKO65fD9dfP3P7Bz/o1GX3kHI6CSynKwdeVPSrXOIKKvApIrIET3cKXYa+0QkOHBtg3+F+DhwboG90ojQDaWpygnaAxx6bu91jQTuUz0ng9CsHnU21i+7b2VTLSDQ+deVARJZPM+4iIkvweg3lbC+pl2yR4egonD0LXV0zH7/7bmcRalcX3HuvE8R7MFifrlwa6ZTTlQMRL1HgLiKyBK/WUM4lEC/JIsNoFP75n+Gpp5xc9c98BgKBS9ubmuB//a+ZzZM8zusngRnlcuVAxGsUuIuIZMFrNZRzCcSbQ4HSLDIMBuGllyCRcG4/+hHceefMfcooaAfvngTOVi5XDkS8RoG7iEgWvFRDOddqHy2hQOEXGcZiEI9DQ8Olx3w+2L3bmXXfuBFWrVrO2/Ucr50EzqdcrhyIeI0CdxGRLHmlhnIu1T6Ong+TspZYIlmY8oTDw87C0u9/H7q74V3vmrn9tttg0ybYvDnbt+d5XjoJXEi5XDkQ8RoF7iIiOXB7DeVc64S/PHCBRArWNtUUZpHhhQvw3e86//7Rj+Atb4G6ukvba2oqKmjP8MpJ4GLK4cqBiNcocBcRWQa31lDOtdpHXcDPhXCcyaTN6vUXXWSYTDrpL9Mrv2zd6tRg7+2FlhYYGJgZuGfJrSdKK+H2k8CllMOVAxGvUeAuIlJGllPtA8ipRv2cRYbj4/Dkk7BvH3zgA7Bly6VtxsDb3gaTk3DttTmXcyxZicoicutJYDbK4cqBiJcocBcRKSO5Vvvw+3wEqnyMxxPLX2T48MOwf7/z78cemxm4A1x1VY7vwlGSEpWSM69fORDxEgXuIiJlJNdqH5F4gtUNQap8ZvmLDHftuhS4nzjhVJAJBlf0PnKtjJO3EpWybF6+ciDiFQrcRUTKyHKqfbz68mYGI/FFFxn2Xxyl89Cz3Dp+hmvv/+8zX2jtWid437jRqRzjX/mfllwq4yy7RKWIiMcocBcRKTO5Vvt4R/d6hiPxhRcZjsf4wGN/z2WTY2xZXc/qvpdhzY6Z3/TBB/M2/lwr4+RcolJExKMUuIuIlJnlVvtYbJFh486buOqln9BUW+2kxezYscQoli/Xyjg5l6gUEfEoBe4iImVoOdU+traF2Fo/zGDrKIevv2bmIsN7L4c/Pgt33eU0TSqg5VTGWbBEpYhIGVHgLiJSpnKq9tHfD5/7HFy8SGtDAzv/121QXT1thxr43d/NuZzjcuRaGWfeEpUiImVIgbuIiMfkWnYvq2ofbW2QSs9Yj43BT34CO3fO3KcIQTvkXhln3hKVIiJlSIG7iIhH5KUZkbVw9CisWuXcMnw+pzLMd77jpMNs317YN7OI5VTGmVOiUkSkDClwFxHxgLw0Izp8GB56CHp7nSB9diWYu++G3btnpciURq6VcXZ1tZdqqCIiRaPAXUTE5fLWjMhaJ2gHOHAA3vQmCE2bzV5h06R8Wm5lHBGRcqbAXUTE5ZbVjMiOQ0fHzB27upxmSRcuwC23QCJRjOHnZHb+/tuvX8dzp0eyrowjIlLOFLiLiLhYrs2Ihp96mo4ffp2Ib5jQ73zC6WaaYQz88i9DSwvU1RV24DlaKn//Hd3rSKVLPmazIFdEpBwpcBcRcbFcmxG9uu8YjadOMLqmgdBjj8H73jdzp3XrCjja5cklf3/n1rZSD1dEpGQUuIuIuNhizYh8yQSpqpn/jR+5+ia6Th0iiXFm2K0tWhnH5chb/r6ISAVQ4C4i4mJzmhFZS2vfabY+9yMahgd4/B0fnBGYn2tq5ye3/Bx1b7+Hy7qvKNGos7es/H0F7iJSoRS4i4i42OxmRIHkJDv//R/xT8YBaO89Tv/lW4FLzYj6b7iVDVeuL+WwpyzWLCrX/P2DvUMc6Rujb3RC+e0iUpEUuIuIkHs30mKZrxnRyauuZ+tzPwKg7dwrU4G7m5oRZdMsqn90Iqf8/eZQgKHxOMf7wyV/fyIipaDAXUQqWl66kRbCuXOwdy90dLD7VbfMaEYU3N5NdXyC49fezOiqDtc1I8p2sekVq+sXzN+fT8DvI5GuLCMiUokUuItIxcpLN9JCePFF+NznnH83NbH17rtnNCP6YRRevHo3AZ+P+IWwq5oR5bLYtH90glgihbXZvXY8kaI+6CeYZaAvIlJuFLiLSEVydTWTK66ApiYYGXFuL7xA944dNIcC7Dvc7+pmRLksNh2JJEhZSyyRJJmyi6bLZPL317eG2KLFqSJSoRS4i0hFckU1k+FheOIJuP12aJtWn9zvh1274ORJuOceJ5AHtrbXs7W93rX5+LkuNu0fHSLgr6I24J/K31+Im/L3RURKRYG7iFQcV1QzefRR+MY3IJWCyUl4xztmbn/d6xasv97RWOPK4DXXZlHNoQAGCFZXMRCOAc7Pe74rH27J3xcRKSUlCopIxVlOgJmpZpI3a9c6QTvA978PExMzt7u4adJCFmsWNZ+A30ewuorbtqxi+9pGYpMpDvYOceJCmNNDEU5cCHOwd4jYZMoV+fsiIqWmGXcRqTjLCTCXXc0kGoXnn4cbb5z5+NVXw5o10NDgpMMEArm/tsvMaRa1hMxi02sua2L3VR2uz98XESk11wTuxph3A19Jf/l+a+3fzrPPTuATwC1ADXAM+Dvg89ba7P5SiEjFW26AmVM1E2vhoYfgySchFnOC9PXTmiIZAx//OIQWzuv2mtnNonJZbNrRWOPq/H0RETdwReBujFkPfB4IA/NOqRhj3gx8HZgA9gCDwBuBPwFuA94x3/NERGZbSYCZNWOcijAxJ3ebxx+H//yfZ+5TRkE7zN8saiELLTZ1a/6+iIgblDzH3RhjgC8BF4G/WmCfRuALQBK421r7y9ba/wZcB/wQeLsx5sHijFhEvC4TYDbVBjg3El1036yqmSQS0N8/9/F77nHu166FbdtWOGpv2N3VwYa2EIPj8akTo+mSKcvpoQiD43E2tIW02FREJAdumHH/NWA3cHf6fj5vB1YDX7HW9mQetNZOGGM+ATwO/CrwtcIOVUTKxe6ujhndSJdVzSQadWbSn3gCGhvhk5+cuah00yYnHWbTJk8uNl2Ore31M5pFHewdmmpsFU+kXNUsSkTEa0oauBtjrgI+A/yptXa/MWahwD3z+Lfn2bYfiAA7jTFBa21sie/59AKburIZs4jM5NWc5LwEmNY6ZR1jMRgbgyNHoGvWfyWbNxfnDblI98ZWTzSLWimvfvZFxLtKFrgbY/zA/wFeAf7HErtnrjG/NHuDtTZhjHkZuBrYDLyYz3GKyPyO9YfZe7iPI+fDU4GZP106cduaenZ3dbg+MMspwLQWkkmnOVJGKAS33urMuDc3OzPwAri/WdRKlMNnX0S8qZQz7r8NvBq43Vq71F+7pvT9yALbM483L/VNrbU3zPd4eib++qWeLyLQc3KQPT29nByIMBqNT81Uh2NJTg9F6B2McLQ/zAPd6+ne2Frq4S5qyQBzYgL27YO9e+GOO+C1r535AvfeC1u3wvXXQ1VVWQaqK1Fui03L6bMvIt5TksDdGHMTziz7/7bW/jAfL5m+t4vuJSIrdqw/zJ6eXg6dHaW1LsCmtpZ5c8MPnR1lT08vzaGAJ2YfFwwwn3kGvpZePrN3rxOo+6at61+9Glav1ixsBSjXz76IeEfRq8pMS5F5Cfhklk/LzKg3LbC9cdZ+IlIgew/3cWogQmtdgHUtoTmlFKt8hnUtIVrrApwaiLDv8DzVVrzkxhudJkng5LKfOzdnl56Tg/z1/uN891A/z58ZJhxLkLKWcCzB82eGeexQP3+9/zg9JweLPHjJp4r77IuI65Rixr0euDL97wkzf6WFLxhjvoCzaPUjwBGgO/28GYtL0ycCm4AEcKJAYxZxvWKkaPSNTnDkfJiRaJwdbS2L7tvZVMvB3iGO9I3RNzrh7nSJZBKeftpJifnAB6Bl2nurroY3vtHJcb/1VggGZzxVs7CVoWw/+yLiKaUI3GPAFxfYdj1O3vv3cYL1TBrNXuCdwOuAf5r1nDuBELB/qYoyIuWomCkax/ud79EcCizatAic2cfmUICh8TjH+8NFDV5yPon54hedwB2c4P2tb525/a67Fnzq7FnY2TKzsMDULKwCd+/xymdfRMpb0QP39ELU9823zRjzKZzA/e+ttX87bdNDwGeBB40xn8/UcjfG1AC/n97nLws2aBGXKvZCuVgiRSJlCfizy7IL+H0kUpZYIrXi752NZZ/E3HzzpcD9Rz+C+++fmce+AM3CVg63f/ZFpDK4oQHTkqy1o8aY9+ME8E8YY74GDAJvwikV+RCwp4RDFCm6UqRoBP0+/D5DOJbMav94IkV90E8wy2BnJZY8ibk4zujTz3J/XZStH3jXzCdfey1s2QLbtzuz61kE7aBZ2Eri5s++iFQOTwTuANbah40xdwG/BbwNqAGOAR8F/sxaq4oy4jkryUsvRYrGlvZ6mkOBqVb2iwWryZRlOBJnfWuILQVODVnqJMZOTnLjP/0VoQvnGQgFqLrlZja96opLL+DzwW/+Zs7fV7OwlcOtn30RqSyuCtyttZ8CPrXI9h8AbyjWeEQKZaV56aVK0ehorGHbmnp6ByOcG4nOe8KQcW4kSlNtgG0dDQWfXV7qJMZUV+Pr6CA4dIGxiQTRPf/Gpld9bMXfV7OwlcOtn30RqSz66yFSZPkoHbiSFI2V2t3VwYa2EIPj8anZx+mSKcvpoQiD43E2tIXY1dW+4u+5mOknMZ1NtTT3n2XVuVfm7Hf82psJ1NXy1Obr2Lf5BvpGJ1b8vTOzsMOR+Jyfw2yZWdiWuoBmYT3KbZ99Eak8rppxFyl32ealH+wdpn90gtduX8Omtro5KTSlTNHY2l7PA93r2dPTy6mBCAd7h6byyeOJFMOROE21AbavbeSB7vUFr6CSOYnZODnKrn97mNbzpxluW8MTb3s/TCs3e7Hzcr7zSx/lpZFJ6qv8eckz1yxsZXHbZ19EKo8Cd5EiWiqlYzyWYGwiwXBkkv7RGL2DUTa11c1JoSl1ikb3xlaaQwH2He7n8PmxqXSf+qCf9a0htnU0sKurvSiBS+YkxtTV03zhPADNA+dZde4VLq7dcGlHY0gEggT8ybzmme/u6uBof5hDZ0cBJzVpvpOxwfE429c2ahbW49z02ReRyqPAXaRIlspLvzAW48SFMGMTCeLJJPFEinAswVAkPqe0oxsWym1tr2dre31RGj/N0d8PjY1QUzN1EjPmr+GVK1/FhiPPcnrL1cRq6+Z9ar5PYjQLW3lK+tkXkYqmwF2kSBbLSx+NTnLiQpihSJygv4rWmiDjsQT+KpMu49gwo7Tjr9y5xTUpGh2NNcULVk6cgG9/G557Dt7xDrjnnhknMS9cfweHu+9koq5x3qcX6iRGs7CVqaiffRERFLiLFM1ieelnhqOMTSQI+quoCzq/lj5jsJapGfXZpR0rMkXj9Gk4eND59969sGvXjDzzlxO+kp3EaBZWREQKTVVlRIokk9IRn5VbHYknGIlOEk+mqA1UTT2eshZjmBGMdzbVMhKNc6RvjIYaPw90r2f72kZikykO9g5x4kKY00MRTlwIc7B3iNhkyrspGrHY3MduvhlC6cB8zRoYHwfcVe2jo7GGnVvb2NXVzs6tbQraRUQkbzTjLlIkC+Wlj04kiCWSBPw+fOkqKNZaYokkdcEgjTWXfk1nl3bcubWt/FI0Tp+Gxx+HZ56B3/1daGq6tC0YhP/8n52gvaNj6mHlmTs02y8iUt4UuIsUyUKlA1Mpi7VQNa10YSSeJFBVRXNtNbWBmb+ms0s7ll2Kxle/CsePO//+3vfgTW+auX3HjnmfVsl55itt6CUiIt6gwF2kiObLS/f5DMZAImWx1hKJJ4klkrSEAqxtrp3zGgtVRSmbhXL33nspcH9lbiOlxZTdSUwWek4Osqenl5MDEUaj8akrDeFYck41ou6NraUeroiIrIACd5Eimi+lIxTwk0hawhMJYpMJgn4/LaEAW1bX0VhbPeP5yZRlYGyCoD/E+dEJDhwb8GZQevEi7NsHIyPwy788c9t118Gdd8Ktt8Lmzct6+bI5iVlCtg29MtWInApFmnkXEfEqBe4iRTZfSsdIdJJ4IkXA7+Oy5lrWNtfOCdpHo5McOjfCWDSB8U3wr8+e9WY6xOgofOITkEov0v35n5+Rr47PB+98Z2nG5jFLNfSarxqRJz4jIiIyLwXuIiUwO6Xj5MA43znUx7mRKPU1/qmSkBl9IxO8cG6EsQmntntdoIqUtd5Mh2hshGuucWqxA/z4x3Pz2GVJSzX0mq6zqZaDvUMc6Rujb3SiIq5GiIiUIwXuIiWUSenYubWNK9c0zFsVZSQyycmL4yRSloagn6vXNtLRdCn33bXpEOPjsH8/rFsH1147c9s998DkJOzePXebZGWxhl6zza5GpMBdRMSbFLiLuMRCVVEicadU5Kqgn+1rm+ak0LgyHeK55+Bv/sYJzjdvnhucd3U5N1m2xRp6zWd2NSIREfEeBe4iLjI7heb86AQP//QMFssNG1oXnVl1VTrExo1g002QTpxwbstcaCrzyzT0CseSWe2/UDUiERHxDv0PLuJCmfSZNY01VFf5aKsP5pwOURTxODz55Nwup42NcNNNsH690zDp8suLM54KkmnoNRyJz+kUO1syZRmOxGmpC7Cl1FdjRERk2TTjLuJirk6H2LcPvvlNJ5c9lYK77pq5/Rd+AaqrwSx+wiHLs1BDr/mcG4nSVBtgW0eD8ttFRDxMM+4iLpZJh4hnGYjHEyn8PlO8dIjxcef+8ccvpcZkBAIK2gtsd1cHG9pCDI7HOT0UmTPznkxZTg9FGByPs6EtxK6u9hKNVERE8kGBu4iLuSIdIpWCU6fmPn7rrVBTA6tWOQ2TktnlWstMfelGWvsO93Pg2AB9oxNZPzfT0Gv72kZikykO9g5x4kKY00MRTlwIc7B3iNhkiu1rG3mge33pFy2LiMiKKFVGxMVKmg6RSsHevc5tZAQ+8xloaLi0vaYGPv5xWLPGaZokOTnWH2bv4T6OnA9PVRBaTkOthaoR1Qf9rG8Nsa2jgV1d7QraRUTKgAJ3EZfb3dXB0f4wh86OAk71mPna2g+Ox9m+tjF/6RDGwFNPwcWLztf798N9983cZ+3a/HyvCtNzcpA9Pb2cHIgwGo1P1exfbkOt2dWIYokUQb+PLe31ymkXESkjCtxF8qgQgVMmHWK+5kzxRIrhSJym2sDK0iGsdSrD1EwbqzFOo6S/+zuoq4NgcEXvY7pKDjCP9YfZ09PLobOjtNYF2NTWMu+J2HIaamUaeomISHlS4C6SB/lKe1hIIdIh+kYnOH52mOBPn2b1j79P84a1NP76h2fudMMNTu76jTc6FWJWqNA/Jy/Ye7iPUwMRWusC86Y+ubKhloiIuIICd5EVynfaw0LylQ4xPXi2Z8/yxof/ljEMgReOcXTLLdx2y1WXAkW/H3buBFY+S16sn5Ob9Y1OcOR8mJFonB1tLYvu66qGWiIi4goK3EVWoJBpDwtZSTrE3OC5mdOdm+g8c4KRCTj0oxd4Ph6YETznY5a8FD8nNzre7/wMm0OBnBtqKXAXEREF7iIr4Im0B2vhZz9j4OF/58nazRwKrp0RPPfftovJvis5vu06zsYMg9OC5+FIPC+z5J74ORWBqxtqiYiI6ylwF1kmz6Q9PPoo/N//y4Vzo7RVn6X1De+aETwPrN3IwNqNAKxLP3xqIMK/9PQyGImveJbcMz+nIsg01ArHsqt5H0+kqA/6i9dQS0REXE1/DaTsrKShTS5WkvZQVDffTCRhGY5M0nL+FbaYxX8enU21jETjHDh+kaN94alZ8tnvMTNL3loXmJoln49nfk4F1jc6wdB4nInJJGeGo4QnJhfdv2ANtURExLM04y5lo9gVS1yV9mAtnDgB3/8+/OIvzqwA09zM6Wu6+WntED2br6OjefGFn1U+Qyjg59zIBP4qw5UdDYvuv9QseSF/Tl4oKzn7c3luZILwRIIfvzzI2uZaLmuupbF2bsWevDfUEhERz1PgLmWhFBVLXJX28Dd/A8884/x7yxa4/fYZm8+8/n5+fOAkKWuzerlEKkU8maKpNrjiRZSF+Dl5pazkfJ/LlrpqxiYmGYlOMjGZZDgS54r2etoanJ9bwRpquYwXTrpERNxGgbt4Xqkqlmxpr6c5FOD0UIRkyi4a4GbSHta3hgqT9rB586XA/fHH4bbbnAZKacsJnoG8zJLn++fklbKSi30uW0JBjvWPMTjuzMCPxxJc3lqHv8rkp6GWi3nlpEtExI0UuIvnlapiSUdjDdvW1NM7GOHcSHTe752Rt7SHc+fg9GmnIdJ0t90G3/427NjhdDs1M4PjXIPn8XiCgN9HddXis+0Zi82S5/Pn5KWykot9Llc3BAn6fZwZjnJ2OEo8kWIoEmdTW92yG2p5gVdOukRE3EqBu3haqSuW7O7q4Gh/mENnR6e+x3yB5IrTHqJR+MIX4IUXIBCA7duhru7S9lAIPvOZBbub5ho8t9XVkLKW8VgiL7Pk2f6c+kYn6GyqIRSo4sCxgTnpE14pK5nN57KxtprG2mrWt4T4ae8gnc01vPX6y+je2FqWKSNeOukSEXErBe7iaaVuaLO1vZ4Hutezp6eXUwMRDvYOTc0ixhOp/KU91NTAyIjz73jcWYT6cz83c58FgvaMXE8yWkIBnn1lOC9XE5b6OfWNTpBMWXw+Q3giwaOH+uakTzTU+D1TVjKXz2V9jZ/LmkPU+KtoCQXKMmgH75x0iUNrEETcSYG7eJobKrt0b2ylORRg3+F+Dp8fm8rbrQ/6l5f2MDwMiQS0tV16zBgnBeYrX3HSYa64Iudx5nqS0RwKMJSu4w4rv5qw0M8pkbx0LAzgr/KRsnZO+sT2zkbPdB11w+fSTUp9ZUyypzUIIu6mwF08zS2VXba217O1vX5ls1R9ffDII9DTA9dfD+9//8ztN94IV145M6DPUa4nGfm+mjD753RyYJzvHOpjLJago7FmwZODQ2dHOTccJZZIUVNdldV7LWUw7JbPpVuU+sqYZEdrEETcT4G7eJqrKrvg5JIvO9CYnISnnnL+/cwzMDgIrdP+OFZXryhoz8jlJGOlVxMW+h6Z2/NnR4jGk3Q01iyZPnFhNEbCWlbVrXzBbKG57XNZaroC4X5agyDiDQrcxdNKUtklH6JRJ299evWXdetg2zY4csSpxR6JzAzc8yzbk4zlXE3I5nJ7LjnrzbUBjvWPORVvYgnaG4LU1yyc01/qYNizn8sC0RUI98t2DUIskeRnvSN8Yf8J3nzdWuW+ixRZSQJ3Y8wq4C3AfcC1wGVAHPgZ8CXgS9baOVMtxpidwCeAW4Aa4Bjwd8DnrbXZ/UWQslO0yi7TLDslpr8f9u6FAwecVJhrr525/W1vc+43bFjxGPMt20A/28vt2eSsj0YnOTMcZSQ6STSeIpZM4SPpia6jpfhcupWuQLhbNmsQMr+Lw5E4F8ZiDEXjnBmOTp2kKvddpDhKNeP+DuAvgXPAPuAVoAN4K/C3wOuNMe+w9lKbR2PMm4GvAxPAHmAQeCPwJ8Bt6dcUD8h3tYKiVXYhDwu3nnwS9u1z/v3YY3MDdxcG7LnI5XL7UjnrF8ZinLgQZmwiQTyZAgvV6dfyQtfRYn4u3U5XINxtqTUIs38XfT5DPJHi4niMC2MTyn0XKaJSBe4vAW8C/n36zLox5n8ATwFvwwniv55+vBH4ApAE7rbW9qQf/ySwF3i7MeZBa+3XivouJCeFrFaQ98ou88h54Za1cxohcffd8N3vOttGR2FiwkmZKRO5lPxbLGd9NDrJiQthhiJxgv4qWmsCjMcS+KsMaxprGByPe6LraDE+l16hKxDutdgahPl+F6PxJMZAe4NzFU657yLFU5LA3Vq7d4HHzxtj/gr4NHA36cAdeDuwGvhKJmhP7z9hjPkE8Djwq4ACd5cqRrWCvFR2WUAuM8kP73+Rtd8/y9qXD8N//+/gn/ZrtmoVvOUtcPnl0NU1N7D3sFxL/p0dipBIwUA4xoZVdTN+nmeGo4xNJAj6q6gL+rHWEkskqQsGubw1RGdTrWe6jhbyc+klugLhXoutQZj9uwiQss6kS1X6pvr7IsXjxsWpk+n7xLTHdqfvvz3P/vuBCLDTGBO01sYWe3FjzNMLbOrKaZSStWJXK1hRZZcFZD2TbC3X/9NfMlIdZ21no1Pa8ZZbZu48u3FSmci15F9bQw0Xw3H8VWZG+kQknmAkOkk8maK1JpB+LEmgqorm2mpqA35qwXNdRwvxufQaXYFwp4XWIMz3uzj9JLqx5lIIofr7IsXhqsDdGOMHfin95fQgfVv6/qXZz7HWJowxLwNXA5uBFws6SMmZ1zsm5jST3Bzi6fVX0/nyU0TiSUI/+cncwL1MLafkX0tdNUF/FYPjccD54z86kSCWSBLw+zDAeMz5uiUUYG1z7YzXqJSuo+VEVyDcZ6E1CNN/F30mE8zPPInOUP19keJwVeAOfAa4BviWtfY70x5vSt+PLPC8zOPNS30Da+0N8z2enom/PrthSrbKoWPifDPJVZNxNhx+lqrEJEdffdvUvlU+Q+813bwyepa6N97Hq968e6GXLZpiBUjLKfnXWFPN7VvbOHR+dCp9AiAaT5JKWS4mnCChJRRgy+q6eSvIqOa3N+kKhLvMtwYhlbJYC1XGYK0lEk8ueBIN+l0UKQbXBO7GmF8DPgYcBt6d69PT93bRvaToyqFj4uyZ5LqRi+z6+t/ij8dIVgd4efsNJIKXxmrr6vjWa3+R9u0boSq7Lp+FUOzW5cst+feGV3Vyx5Wrp9InTlwIY0wc44OWUIDm2mrWLlD2EVTzWyQf5luDYIwhNplkMmWJTiaWPInW76JI4bkicDfGfAj4U+AQcI+1dnDWLpkZ9Sbm1zhrP3GJcuiYOHsmebyxlWhdAw3xmDPzfuRZjr/qUjqMG/54laJ1+UpK/nU0MpU+0fPyIF996hVODUa4Zm1jXhstKT1DZGGz1yD0jUQZisSJTSRobQjSmp5pny9oV/19keIoeeBujPkITi3253GC9v55djsCdANXAjMWl6bz4jfhLGY9UdDBSs483TExmYSnn+aKprY5M8nHr72ZKw7+kGPX3swr23ZceooL/niVsnX5Skv+dTTWcN+OtZwZifLYoX6Go5OLBu7Z1vwu9tUHEa+avQbh4WfP8NzpERpr/Gxpb1jweaq/L1IcJQ3cjTEfx8lrfxZ4jbV2YIFd9wLvBF4H/NOsbXcCIWD/UhVlpPi80DFx3lnYky/BP/4jDA+z+uab2bb1rhkzyae2XcfJq66fU87RDX+8SrkYOF8l//JZ87sUVx9EvC6zBqG9sYa/3n+cQ2dHOT0UUf19kRIrWeCebp70uzgz6K+dJz1muoeAzwIPGmM+P60BUw3w++l9/rKQ45XlcXPHxMVmYW9ghPvOXaCpthp6erj3jtdytD80M5A07vvj5YbFwPko+ZevE4BSXn0QKQeqvy/iLiUJ3I0x78EJ2pPAk8CvmbmNaE5aa78MYK0dNca8HyeAf8IY8zVgEKf76rb043uKM3rJlRs7Jk7Nwl4Yp/GV44Q3bCFQXXVpFrY2QJNt5AabZM19r2PzZa08UB1y/R+vfCwGzkceeD5K/uXjBMDrpUhF3ED190Xco1Qz7pvS91XARxbY53vAlzNfWGsfNsbcBfwW8DagBjgGfBT4M2utKsq4lNtmbDKzsMkDP+QXjvWwNjrMgc53c6F9M3DpROIr21/D/s1reP+N29gaCtG9MeT6P14rWQxciDzwlZb8W8kJgBuuPoiUC9XfF3GHkgTu1tpPAZ9axvN+ALwh3+ORwnPTjE1mFvbO8QEumxgBY9j63I+4sM4J3DOzsKdp4+Wh+IxZWLf/8VruYuCTA+N86/lzrs0DX84JQDmUIhVxG9XfFymtkleVkcpR0qA3HIb6+hmzsBdvug1OPkfCX81YcxtYO2Ox6WKzsG7947WcxcBNoWqeeWWIEwPjZZUHXg6lSEVERKZT4C5FV7SgN5WCZ5+Fxx6DwUH49KdnzMJOtNTz49e+gwuXbSIRCM55uhdnYZezGDiZtPSNx8ouD9zTpUhFRETmob9QMkPf6AQHjg2w73A/B44N0Dc6UeohLV8qBf/0T3D8OAwNwTPPzJmFPbepa96gPcOLs7C7uzrY0BZicDw+NfM+XTJlOT0UYXA8TntjkCqfYSQap7Npbgvz6TqbahmJxqeuQLhd5urDcCQ+52cwW+bqQ0tdQM1jRETEtTTjLkCZNKiZleqC3w933QXf/CZUVcGFCwRbNpX9LGwui4G3dzby/aMDZZkH7uZSpCIiIsuhwF283aDGWnjpJScdprMT3vrWmdvvusvpgHrXXdDczJbRCdc3hMqHbBcD9w5GeOLIhbLNA3djKVIREZHlUuBe4TzfoObIEfiTP3H+fewY3HcfBKelvjQ0wJvfPPVlJc3CZrMYuH90oqyvQLitFKmIiMhKKHCvcJ5vULNtG7S3Q38/RCJw+DDs2LHoUyptFnaxxcDLqULjtSsQbipFKiIishIK3CuYpxrUnD4Njz8O99wD69YBlzp81nTdRH3LWVre9DpWb92w5EtpFvaSSrkC4fb6+yIiItlQ4F7BvNKgZuif/y+x//uvJK0l0h9m8G0PcvD08LSFtB34W9fQ/Mww284mslpIq1nYSyrpCoRb6++LiIhkQ4F7BctHg5pCzmBmKt1c6Aty2/kxLJaJRx7nc/FNRPw1VPkMHY01y15Iq1lYh65AiIiIeIMC9wq2kgY1BSkfefEiPP00vOY19JwaulTpZrKOja2djNbW852OqzkZNQT9k7TWBWis8dPW4ATZy11Iu9gsbKUE9boCISIi4n4K3CvYchcmhmMJvrH/eP7KR1oLX/4y/PjHYC2nGlaz54zvUqWby1t54Rc/wKG+MGeGojQbMMYwEp3k+IVxAv4qGmur87qQtizq2udIVyBERETcTYF7BVvOwsRVdQG++2JffstHGgOBgBPAA73//G+c2vbaGZVuxuNJRqKTxJMpWusC+NKNlsYmEpwdjtJYWz31citdSFuIuvZeCoaVBy4iIuJOCtwrXK4LEy2srHzk+DhcuAAbN8584j33wJNPMrZxCz/0b55T6WZ0IkEskSTg900F7aFAFRfHYwxHJ4nGE9QG/FNjWO5C2nzXta/EmXsREREpDAXuFS6XhYmvuaqD77zQl1X5yObaAD8dGOSJl/pZ21xD9+ogHXu/DT/8ITQ2wu//PvimLYpdswY+/Wl+NmQ5/P2XaY4lZgTMqZTFWqgylx4zxhD0VxFLJBmduBS4w/I7fOazrr2nO9KKiIiI6yhwl6wXJvaPTixZPnI0OsmZ4Sgj0UnCE0lePDfG3z75Mk+0BHn3vz7OhhpompyEZ5+F66+f+eRVq4hd6J+30o3PZzAGEik783FjsNaZCZ9uOR0+81nX3vMdaUVERMR1FLgLkN3CxN7ByKLlIy+MxThxIUw0HCWZSGD9Qay1ROJJnusb59urtnHnsZ+w/lVXclkwOO9rLFTpprHGT9BfxXgsTsraqXSZlHVST2YHxcvp8JnPuvae70grIiIirqPAXWZYbGHiYuUjR6OT9L1ynh2Herip93le2Hodj15xC/4qw2UttbTVBzlafSNHV62necd2fmX1BrbO8z0WqnQTCvhpqq0mPJEgGk9SF/RjrSWWSFIXDNJYc+mjvNwOn/moaw8e60grIiIinqHAvczls5rJYuUjzwxHaTrXy53He6iu8rHjxEH+Y/111DXV01jjp8pnaFu7mtO1dZy6GF1whnmxSjeXNdcyGp1kKBIHwFpLoKqK5tpqagP+JTt8LvWzWEld++m80pFWREREvEWBe5kqRDWTGUH1cIR1rXUAROIJRqKTnFy9idc3NNEUGWPcF6A9FqamtmXGotFsZpgXqnTTWFvN5tX1HOsfY3A8TiyRorHGj88YTlwIL9jhM9ufxXLr2s9Ox8nXzL2IiIjIdArcy1Ahq5ncs6ERvvtdmn70A5583YOENqyfKtVYHfCz/9q7iCZSPN+2keb6GjY31854fjYzzEtVugFoqq3G5zO01QWor/Hj95l5O3zm+rPIta79fOk4+Zq5FxEREZlOgXuZKXQ1ky2PPkzj8R9xnCh9L/yEf/c5z43Gk6RSlh+1bHDSV2r8bFldN6MxUkY2M8yLVrrZ2Mq2jgauXddEKv0686W+LOdnkWtd+9npOLD8jrS5LKQVERGRyqPAvcwUvJrJXXexuqeHgN9HTbyPVzobOH4xijFxjA9aQgGaa6tZ21w7b9AO2c8wZ1PpZjHL+Vm8/87NWde1n56OM91yOtLmupBWREREKo8C9zKSt2omiQQ89RS89BK85z0wrekRV1wBN95IU1cX1918M53RJD0vD/LVp17h1GCEa9Y2Ul8zf8AOy5thXqzSzUJW8rPItq79Yic8+Zi5FxEREZlOgXsZyUs1k0QCfvu34eJF5+s77oAtW2bOet99vzPrXV1NR3U19+1Yy5mRKI8d6mc4Orlo4F6sGeaV/ixWOtufS0fahWbuRURERKZT4F5G8lLNxO+Hri74wQ8A6P/X/+Dh7tcvWZHFbTPM+arsspzZ/ox8zNyLiIiIZChwLyM5VTOxljUnXyJU7SPo3zxz2z33wKFDvHRVN1+uWsfRQ/1ZVWRx0wyzWyq7rHTmXkRERCRDgXsZybaaSePFPm78zj8TO3OewNo1bPmvb525w2WXcewj/4MvfP/lnCqyuGmG2W2VXVYycy8iIiICCtzLSrbVTMYbW0iMjBHw+1g3OUbHqaPwqlfN2GfvSxeWVZ3GLTPMquwiIiIi5UaBe5mZkWtuLVdPXCTasop4rdPlNJmynA4nqF2/nTv6j9B8/+th/foZr5GP6jRumGF2W969iIiIyEoocC8zmWom+77xBJc98l2a+s7w/PV3cuL6O2bkmo/f8xrqut9H57bOOa+Rl+o0LqDKLiIiIlJOFLh7SLbpJ90bW+nYvorwvmGG6wJcd/xZDl+3k0CwOqtc83xVZHEDN+Xdi4iIiKyEAvcSyjYQP9YfZu/hvgVLMt67JkDdmtUzX+umbq7at4HIxWHOXHkt772+E39TQ1a55m6pyJIvbsm7FxEREVkJBe4lsFQgnqmNDtBzcpA9Pb2cHIjMKcnoe/EQHPspR/pO8q23f5BI86oZr9W947XcdPNVXLG5kytyGJ/bKrLkixvy7kVERESWS4F7kS0WiGdqoz93eoQbNrQQrPLxnUN9nBuJ0tFYM6ck4zX7f0ao9xhjyRS13/8er9x9H4211Zdeq7aWZ57p5wFfkO6NrVmPURVZRERERNxHgXsRHesPs6end8Ha6EPjcY70jfJS3xhPnxqiymcITyQI+H3U+X2M11TTWFsNwGh0ku+uvZafP/Iixhjqk3F85lKJxvnqrOeSx62KLCIiIiLuosC9iPYe7luwNvqFsRgnLoQJTySJJ1NMRlMYoGOoj9tPPUvzZJRv3vMgW1bX0dZQw5nhKGca19Jy9e28vHk7L1NDa3SSaDxBbcC/YJ31bKkii4iIiIi7KHAvksVqo49GJzlxIcxQJE7QX0V7Q5ALYxMEJ6J88McPUeODRMpSc7aX46wnZWEkOkk8ZXn22lvxGUNwYpJYIsnohBO4ZyxUZz0bqsgiIiIi4h4K3ItksdroZ4ajjE0kCPqrqAs6h8Rf5SMcqOWFtVfS3XeU6ipD18ArPNnayamL48QSSQJ+Hz7jvJbPGKx1UlimW2md9WJWZFHVFxEREZGFeSpwN8asA34XeB2wCjgHPAz8T2vtUAmHtqSFaqNH4gnMhX52P/8TxjrXcWTj1QBTAfkPN72aULCan259NX0tHcTHY4zFwFqoMpdOAFLWqSYzXwWYfNRZL2RFllyq7IiIiIhUKs8E7saYLcABoB34V+AwcBPwX4HXGWNus9ZeLOEQF7VQbfSmlw7xS//xNWzKMjZ6liMbtoMx+IzBZ+B0Qxv/cePr8BmDAYL+KhLJFGCw6XMAay2xRJK6YJDGmrmHdL46626Z3c6mys7R/jAPdK/PqTKOiIiUF7f83RIpJc8E7sD/Hydo/zVr7eczDxpj/hj4deDTwAdLNLYlLVQb/WzH5VxdVU3Axlk1Nsi6C730rl5PIpWittqPMRCNJ6dSaHzGgM+HMTAxmSJlLdF4kkBVFc211TPy22FunXU3zW4vVWVnpZVxRETE+9z0d0uk1DwRuBtjNgOvBU4CfzFr8+8AHwDebYz5mLV2vMjDy8pCtdGTwRp+tvFqmkaHOLT9Jk6vXk8kHYi31QeIJVIMReIA1AaqnJSYKkOo2k8yFWdoPI4x0BIKsLa5ds73nV5nvXcw4qrZ7cWq7AArrowjIiLepquyIjN5InAHdqfvH7XWzkjUttaOGWN+gBPY3wI8vtgLGWOeXmBT14pHuYT5aqM31vj5wat3MxiZpCVUzUQ8SSyRpCUUYPPqemKJFCcuhBmbSDA4HiOeSNFQU011jSGezptvCPrZuCo0VeMd5tZZ39Je76rZ7cWq7My2kso4IiLiTboqKzKXVwL3ben7lxbYfhQncL+SJQL3UlqoNjoGUilL/9gEdYFqWkIBtqyumwrEg34fZ4ajnB2OYjDUB/2sba6lo6mGofE4KetUphmPJxess/7MK0Oumt1erMrOfGNbSWUcERHxHl2VFZnLK4F7U/p+ZIHtmcebl3oha+0N8z2enom/PueR5Wi+2ugpG2QiniI6maQ+WMWVHQ201AWmnlMX9NNQ46c5VE1nUw2v3b6GTW11bGmvZ2wisWSd9YYaP//0VK+rZrcXqrKzkHxUxhEREW/QVVmR+XklcF9KZsrWLrqXS8xXG/3kwDjPvDJE32iMlwfCDEXmdindsb55Th5fRyNL1lk/cGzAdbPbC1XZWch8lXFERKQ86aqsyPy8ErhnZtSbFtjeOGs/T5hdG/2O/tXL7lK6WJ11N85uL1RlZz6zK+OIiEh5c+PfLRE38ErgfiR9f+UC269I3y+UA+8JhepS6sbZ7YWq7MxnemUczaSIiJQ/N/7dEnEDrwTu+9L3rzXG+KZXljHGNAC3AVHgR6UYXL7lu0upW2e356uyM1/FgExlnF1d7QUdj4iIuINb/26JlJonTk2ttceBR4GNwIdmbf6fQB3wFbfWcC+1zOx2U22AcyPRRfct5ux2psrO9rWNxCZTHOwd4sSFMKeHIpy4EOZg7xCxydRUZRxVCxARqQxu/bslUmpemXEH+P8CB4A/M8bcA7wI3AzswkmR+a0Sjs313Dq7PV+VnVxy+0VEpDy59e+WSCl5JnC31h43xnQDvwu8DngDcA74M+B/WmsHSzk+t1uohvxCdd+LGSgXKrdfRES8y81/t0RKxTOBO4C1thd4b6nH4VVun93Od26/iIh4m9v/bokUm6cCd1k5zW6LiIiX6O+WyCUK3CuUZrdFRMRL9HdLxCNVZUREREREKp0CdxERERERD1DgLiIiIiLiAQrcRUREREQ8QIG7iIiIiIgHKHAXEREREfEABe4iIiIiIh6gwF1ERERExAMUuIuIiIiIeIACdxERERERDzDW2lKPwRWMMRdra2tbr7rqqlIPRURERETK1Isvvkg0Gh201q7K9bkK3NOMMS8DjcDJAn2LrvT94QK9vriHjnXl0LGuHDrWlUPHunKU6lhvBEattZtyfaIC9yIxxjwNYK29odRjkcLSsa4cOtaVQ8e6cuhYVw4vHmvluIuIiIiIeIACdxERERERD1DgLiIiIiLiAQrcRUREREQ8QIG7iIiIiIgHqKqMiIiIiIgHaMZdRERERMQDFLiLiIiIiHiAAncREREREQ9Q4C4iIiIi4gEK3EVEREREPECBu4iIiIiIByhwFxERERHxAAXuBWaMWWeM+TtjzFljTMwYc9IY8zljTEupxya5McasMsa8zxjzDWPMMWNM1BgzYoz5vjHml40x8/4+GWN2GmO+ZYwZNMZEjDHPGWM+YoypKvZ7kOUzxrzbGGPTt/ctsI+OtYcZY+4wxnzdGHMu/f/1OWPMo8aYN8yzr461Bxlj7ksf09Pp/8NPGGP+xRhz6wL76zi7mDHm7caYzxtjnjTGjKb/f/6HJZ6T8zE1xrzHGPOUMSac/rv/hDHm5/P/jpamBkwFZIzZAhwA2oF/BQ4DNwG7gCPAbdbai6UboeTCGPNB4C+Bc8A+4BWgA3gr0AR8HXiHnfZLZYx5c/rxCWAPMAi8EdgGPGStfUcx34MsjzFmPfAzoAqoB95vrf3bWfvoWHuYMeYTwO8BA8AjOL/nbcCrgX3W2t+ctq+OtQcZYz4L/CZwEXgY51hvBd4E+IFfstb+w7T9dZxdzhjzLLADCAOngS7gH62171pg/5yPqTHmj4CPpV//ISAAPAi0Ah+21v55ft/VEqy1uhXoBnwHsOkDO/3xP04//lelHqNuOR3P3Ti/4L5Zj6/BCeIt8LZpjzcC/UAM6J72eA3OCZ0FHiz1+9JtyeNugMeA48Afpo/b+2bto2Pt4RvwjvQx+i7QMM/2ah1rb9/S/08ngfNA+6xtu9LH7YSOs7du6WN3Rfr/6bvTx+UfFtg352MK7Ew/fgxomfb4RpwTwAlgYzHfs1JlCsQYsxl4LXAS+ItZm38HGAfebYypK/LQZJmstXuttd+01qZmPX4e+Kv0l3dP2/R2YDXwNWttz7T9J4BPpL/81cKNWPLk13BO2t6L83s7Hx1rj0qnuH0WiAC/aK0dm72PtXZy2pc61t60ASc9+MfW2v7pG6y1+4AxnOOaoePsAdbafdbaozYdTS9hOcf0g+n7T1trh6Y95yRObBfE+dtQNArcC2d3+v7ReQK9MeAHQAi4pdgDk4LI/GFPTHss8xn49jz778cJFHYaY4KFHJgsnzHmKuAzwJ9aa/cvsquOtXftBDYB3wKG0jnQHzfG/NcF8p51rL3pKBAHbjLGtE3fYIy5E2jAubKWoeNcfpZzTBd7zn/M2qcoFLgXzrb0/UsLbD+avr+yCGORAjLG+IFfSn85/Zd7wc+AtTYBvIyTV7m5oAOUZUkf1/+Dkwb1P5bYXcfau25M3/cBz+Dkt38G+BxwwBjzPWPM9JlYHWsPstYOAh/HWZd0yBjzN8aY/2WM+WfgUZw0qV+Z9hQd5/KT0zFNZ0RcBoSttefmeb2SxHH+Yn6zCtOUvh9ZYHvm8ebCD0UK7DPANcC3rLXfmfa4PgPe9ts4CxNvt9ZGl9hXx9q72tP3H8T5w30v8GOc1Ir/Dfwc8C9cSoPTsfYoa+3njDEngb8D3j9t0zHgy7NSaHScy0+ux9SVnwHNuJeOSd+rrI+HGWN+DWe1+WHg3bk+PX2vz4DLGGNuwpll/9/W2h/m4yXT9zrW7pMpAWeAt1trH7fWhq21LwBvwakkcddC5QLnoWPtUsaY38SpCvJlYAtQB9wAnAD+0RjzB7m8XPpex7l8LPeYFvUzoMC9cDJnYk0LbG+ctZ94jDHmQ8CfAoeAXelLsdPpM+BB01JkXgI+meXTdKy9K7Pg7IS19uD0DekrLZmraDel73WsPcgYczfOIuR/s9Z+1Fp7wlobsdY+g3OCdgb4WLqwBOg4l6Ncj+lS+y81I18QCtwL50j6fqHcpyvS9wvlwIuLGWM+Avw58DxO0H5+nt0W/Aykg8NNOItZTxRomLI89TjH7CpgYlrTJYtTEQrgC+nHPpf+WsfauzLHbniB7ZnAvnbW/jrW3pJplrNv9gZrbQR4CicmenX6YR3n8pPTMbXWjuOc0NUbYzrneb2SxHEK3Asn85/Da2d31DTGNAC3AVHgR8UemKyMMebjwJ8Az+IE7f0L7Lo3ff+6ebbdiVNV6IC1Npb3QcpKxIAvLnD7aXqf76e/zqTR6Fh7136cP9ZXGGMC82y/Jn1/Mn2vY+1NmUohqxfYnnk8nr7XcS4/yzmmiz3n9bP2KY5SFc2vhBtqwFR2N5zUCQv0AK1L7NsIXEANPMrmBnyKhRsw6Vh79Ab8Q/oY/f6sx18DpHBm45t1rL17A/5T+ticBy6bte316eMcBVbpOHvzRnYNmHI6priwAZNJD0AKwBizBefD0A78K/AicDNOp6+XgJ3W2oulG6HkwhjzHpxFTUng88yf13bSWvvlac+5H2cx1ATwNZz2ym8i3V4Z+E9Wv4SeYYz5FE66zPuttX87a9v96Fh7kjGmHae3xlbgSZy0iQ04uc8WpzHTv0zb/350rD0lfeX7OzhVg8aAb+AE8VfhpNEY4CPW2j+d9pz70XF2tfQxuj/95RqcKlAncH6PAQastb8xa/+cjqkx5n8DH8VZqP4QEAAeAFbhTMz+ef7f2SJKfYZU7jdgPfAl4BzOJbhTOAsaF52t1c19Ny7Nti52e2Ke591GurkLzozOz4BfB6pK/Z50W/Zn4H0LbNex9ugNaMW5Gvpy+v/qizgTLrfoWJfHDagGPoKTojqKkyLVj1O7/7U6zt67ZfF3+WQ+jinwHuAnON2zx4DvAT9fivesGXcREREREQ/Q4lQREREREQ9Q4C4iIiIi4gEK3EVEREREPECBu4iIiIiIByhwFxERERHxAAXuIiIiIiIeoMBdRERERMQDFLiLiIiIiHiAAncREREREQ9Q4C4iIiIi4gEK3EVEREREPECBu4iIiIiIByhwFxERERHxAAXuIiIiIiIeoMBdRERERMQDFLiLiIiIiHiAAncREREREQ/4fwEZbd1j9ZO9vwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 248, "width": 375 }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.scatter(X, y, alpha = .6)\n", "plt.plot(X, X, linestyle = \"dotted\", color = \"red\", alpha = .6)" ] }, { "cell_type": "markdown", "id": "dd9d6bcd", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Heteroscedasticity and $\\beta$ SE\n", "\n", "- Heteroscedasticity can also **bias** our estimates of the error associated with each coefficient. \n", "- Typically, this results in an **underestimate** of SE––potentially leading to **false positives**. \n", "- This is because calculating $SE$ *depends* on $S_{Y|X}$!" ] }, { "cell_type": "markdown", "id": "f9514c7f", "metadata": {}, "source": [ "#### Calculating $SE(\\beta)$\n", "\n", "The formula for calculating the **standard error of our slope coefficient** is:\n", "\n", "$SE(\\beta_1) = \\frac{S_{Y|X}}{\\sqrt{SS_X}} = \\sqrt{\\frac{\\frac{1}{n-2}RSS}{SS_X}}$\n", "\n", "(You won't be required to know this––but adds important context!)" ] }, { "cell_type": "markdown", "id": "16be39fd", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Conclusion\n", "\n", "- An important part of statistical modeling is **evaluating** our models, either by:\n", " - **Visual inspection**. \n", " - Using **metrics** of predictive success.\n", "- Metrics liks $S_{Y|X}$ depend on certain assumptions being met, like **homoscedasticity**." ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }